Home
Class 11
PHYSICS
Let vec(C ) = vec(A) + vec(B),...

Let `vec(C ) = vec(A) + vec(B)`,

A

`|vec(C )|` is always greater than `|vec(A)|`

B

It is possible to have `|vec(C )| lt |vec(A)| and |vec(C )| lt |vec(B)|`

C

`|vec( C)|` is always equal to `|vec(A)| + |vec(B)|`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    AAKASH SERIES|Exercise Practice Sheet (Exercise-II) (Resolution of Vectors (Level -I)) (Straight Objective Type Questions)|19 Videos
  • VECTORS

    AAKASH SERIES|Exercise Practice Sheet (Exercise-II) (Resolution of Vectors (Level -II)) (Straight Objective Type Questions)|8 Videos
  • VECTORS

    AAKASH SERIES|Exercise Practice Sheet (Exercise-I) (Addition of Vectors) (Level-I) (Straight Objective Type Questions)|17 Videos
  • UNITS AND MEASUREMENTS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (PRACTICE SHEET (ADVANCED))|14 Videos
  • VISCOSITY

    AAKASH SERIES|Exercise Questions for Descriptive Answers|3 Videos

Similar Questions

Explore conceptually related problems

Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(j)-vec(k) . If vec(r ) xx vec(a) = vec(b) xx vec(a), vec(r ) xx vec(b) = vec(a) xx vec(b) , then (vec(r ))/(|vec(r )|) =

If vec(C) = vec(A) + vec(B) then

Let vec(a)= vec(i) + vec(j), vec(b)= 2vec(i) -vec(k) . Then the point of intersection of the lines vec(r ) xx vec(a) = vec(b) xx vec(a) and vec(r ) xx vec(b)= vec(a) xx vec(b) is

Let vec(a)= 2vec(i) + vec(k), vec(b) = vec(i) + vec(j) + vec(k) and vec( c)= 4vec(i) -3vec(j) + 7vec(k) . Determine a vector vec(r ) satisfying vec( r) xx vec(b)= vec( c) xx vec(b) and vec(r ).vec(a)= 0 .

If (vec(A) + vec(B)) is perpendicular to vec(B) and (vec(A) + 2 vec(B)) is perpendicular to vec(A) , then

Let vec(a) + m vec(b) + n vec(c )= vec(0).vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a)= vec(0) for

Let |vec(a) + vec(b)| = |vec(a)-vec(b)| . If |vec(a) xx vec(b)|= lamda |vec(a)| , then lamda =

Let vec(a)= 2vec(i) + vec(j)-2vec(k), vec(b)= vec(i) + vec(j) " if " vec(c ) is a vector such that vec(a).vec(c )= |vec(c )|, |vec( c)- vec(a)|= 2 sqrt2 and the angle between vec(a) xx vec(b) and vec(c ) " is " 30^(@) , then find |(vec(a) xx vec(b)) xx vec( c)|