Home
Class 12
MATHS
The function f(x) is defined over the wh...

The function f(x) is defined over the whole number scale by the following law:
`f(x)={{:(,2x^(3)+1, if x le 2),(,1//(x-2), if 2 lt x le 3),(,2x-5, if x gt 3):}`
Find `f(sqrt2), f(sqrt8), f(sqrt(log)2) ,f(1024)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) for the given values \( \sqrt{2} \), \( \sqrt{8} \), \( \sqrt{\log 2} \), and \( 1024 \). The function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} 2x^3 + 1 & \text{if } x \leq 2 \\ \frac{1}{x - 2} & \text{if } 2 < x \leq 3 \\ 2x - 5 & \text{if } x > 3 \end{cases} \] ### Step 1: Evaluate \( f(\sqrt{2}) \) 1. Calculate \( \sqrt{2} \): \[ \sqrt{2} \approx 1.414 \] Since \( \sqrt{2} \leq 2 \), we use the first case of the function: \[ f(\sqrt{2}) = 2(\sqrt{2})^3 + 1 \] 2. Calculate \( (\sqrt{2})^3 \): \[ (\sqrt{2})^3 = 2\sqrt{2} \] 3. Substitute back into the function: \[ f(\sqrt{2}) = 2(2\sqrt{2}) + 1 = 4\sqrt{2} + 1 \] ### Step 2: Evaluate \( f(\sqrt{8}) \) 1. Calculate \( \sqrt{8} \): \[ \sqrt{8} = 2\sqrt{2} \approx 2.828 \] Since \( 2 < \sqrt{8} \leq 3 \), we use the second case of the function: \[ f(\sqrt{8}) = \frac{1}{\sqrt{8} - 2} \] 2. Simplify \( \sqrt{8} - 2 \): \[ \sqrt{8} - 2 = 2\sqrt{2} - 2 = 2(\sqrt{2} - 1) \] 3. Substitute back into the function: \[ f(\sqrt{8}) = \frac{1}{2(\sqrt{2} - 1)} = \frac{1}{2\sqrt{2} - 2} \] ### Step 3: Evaluate \( f(\sqrt{\log 2}) \) 1. Calculate \( \sqrt{\log 2} \): \[ \log 2 \approx 0.301 \quad \Rightarrow \quad \sqrt{\log 2} \approx 0.55 \] Since \( \sqrt{\log 2} \leq 2 \), we use the first case of the function: \[ f(\sqrt{\log 2}) = 2(\sqrt{\log 2})^3 + 1 \] 2. Calculate \( (\sqrt{\log 2})^3 \): \[ (\sqrt{\log 2})^3 = (\log 2)^{3/2} \] 3. Substitute back into the function: \[ f(\sqrt{\log 2}) = 2(\log 2)^{3/2} + 1 \] ### Step 4: Evaluate \( f(1024) \) 1. Since \( 1024 > 3 \), we use the third case of the function: \[ f(1024) = 2(1024) - 5 \] 2. Calculate: \[ f(1024) = 2048 - 5 = 2043 \] ### Final Results - \( f(\sqrt{2}) = 4\sqrt{2} + 1 \) - \( f(\sqrt{8}) = \frac{1}{2\sqrt{2} - 2} \) - \( f(\sqrt{\log 2}) = 2(\log 2)^{3/2} + 1 \) - \( f(1024) = 2043 \)
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Investigation of Functions|15 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Inverse Functions|6 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x) ={(4-3x,",",0 lt x le 2),(2x-6,",",2 lt x le 3),(x+5,",",3 lt x le 6):} , then f(x) is

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", if " 0 lt x le 1 ),(= 4x^(2)-3x", if " 1 lt x le 2 ):} then f is

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x)={{:(,3^x,at,-1lt x lt0),(,4,at,0 le x lt 1),(,3x-1, at,1 le x le 3):} Find f(2), f(0), f(0.5), f(-0.5), f(3).

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}

If f:R to R is defined as: f(x)= {{:(2x+1, "if",x gt 2),(x^(2)-1,"if",-2 lt x lt 2),(2x,"if",x lt -2):} then evaluate the following: (i) f(1) (ii) f(5) (iii) f(-3)

IA MARON-INTRODUCTION OF MATHEMATICAL ANALYSIS-Function. Domain of Definition
  1. Give the function f(x)=(x+1) (x^(3)-1). Find f(-1),f(a+1), f(a)+1.

    Text Solution

    |

  2. Given the function f(x)=x^(3)-1. Find (f(b)-f(a))/(b-a) (b ne a) and f...

    Text Solution

    |

  3. Given the function f(x)={{:(,3^(-x)-1, -1 le x lt 0),(,tan (x//2), 0 l...

    Text Solution

    |

  4. The function f(x) is defined over the whole number scale by the follow...

    Text Solution

    |

  5. Calculate f(x)=(49)/(x^(2))+x^2 at the points for which 7/x+x=3

    Text Solution

    |

  6. Find a function of the form f(x)=ax^(2)+bx+C. If it is known that f(0)...

    Text Solution

    |

  7. Find a function of the form f(x)=a+bc^(x) (c gt 0) if f(0)=15, f(2)=...

    Text Solution

    |

  8. Given the function f(x)=(5x^(2)+1)/(2-x) Find f(3x), f(x^(3)), 3f(x)...

    Text Solution

    |

  9. Let f(x)={{:(,3^x,at,-1lt x lt0),(,4,at,0 le x lt 1),(,3x-1, at,1 le x...

    Text Solution

    |

  10. Prove that if for an exponential function y=a^x (a gt 0, a ne 1) the v...

    Text Solution

    |

  11. f(x)=x^(2)+6, omega (x)=5x. Solve the equation f(x)=|omega (x)|.

    Text Solution

    |

  12. Find f(x) if f(x+1)=x^(2)-3x+2

    Text Solution

    |

  13. Evaluate the functions f(x)=x^(2)+1/x^(2) and phi(x)=x^4+1/x^4 for t...

    Text Solution

    |

  14. f(x)=x+1, omega (x)x=x-2, solve the equation |f(x)+phi(x)|=|f(x)|+|o...

    Text Solution

    |

  15. A rectangle with altitude x is inscribed in a triangle ABC with the ba...

    Text Solution

    |

  16. Find the domains of definaton of the following functions: (a) f(x)=s...

    Text Solution

    |

  17. Find the domains of definaton of the following functions: (a) f(x)=s...

    Text Solution

    |

  18. Find the domains of definition of the following functions: (a) y=(2x...

    Text Solution

    |

  19. The function f(x) is defined on the interval (0,1). What are the domai...

    Text Solution

    |

  20. The function f(x) is defined on the interval [0,1]. What are the domai...

    Text Solution

    |