Home
Class 12
MATHS
Test the function f(x)=tan x +cot" x, wh...

Test the function `f(x)=tan x +cot" x, where "0 lt x lt pi/2`, for increase and decrease.

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( f(x) = \tan x + \cot x \) is increasing or decreasing on the interval \( (0, \frac{\pi}{2}) \), we need to follow these steps: ### Step 1: Find the derivative of the function To analyze the behavior of the function, we first find its derivative \( f'(x) \). \[ f'(x) = \frac{d}{dx}(\tan x) + \frac{d}{dx}(\cot x) \] Using the derivatives of the trigonometric functions, we have: \[ f'(x) = \sec^2 x - \csc^2 x \] ### Step 2: Rewrite the derivative in terms of sine and cosine We can express \( \sec^2 x \) and \( \csc^2 x \) in terms of sine and cosine: \[ f'(x) = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \] ### Step 3: Combine the fractions To combine the fractions, we find a common denominator: \[ f'(x) = \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \] ### Step 4: Analyze the numerator The sign of \( f'(x) \) depends on the numerator \( \sin^2 x - \cos^2 x \): - \( f'(x) > 0 \) when \( \sin^2 x > \cos^2 x \) - \( f'(x) < 0 \) when \( \sin^2 x < \cos^2 x \) ### Step 5: Determine critical points The critical point occurs when \( \sin^2 x = \cos^2 x \), which happens at: \[ \tan^2 x = 1 \quad \Rightarrow \quad x = \frac{\pi}{4} \] ### Step 6: Test intervals around the critical point We need to test the sign of \( f'(x) \) in the intervals \( (0, \frac{\pi}{4}) \) and \( (\frac{\pi}{4}, \frac{\pi}{2}) \). 1. **For \( x \in (0, \frac{\pi}{4}) \)**: - Choose \( x = \frac{\pi}{8} \): - \( \sin^2(\frac{\pi}{8}) < \cos^2(\frac{\pi}{8}) \) (since \( \tan(\frac{\pi}{8}) < 1 \)) - Thus, \( f'(\frac{\pi}{8}) < 0 \) → \( f(x) \) is decreasing. 2. **For \( x \in (\frac{\pi}{4}, \frac{\pi}{2}) \)**: - Choose \( x = \frac{3\pi}{8} \): - \( \sin^2(\frac{3\pi}{8}) > \cos^2(\frac{3\pi}{8}) \) (since \( \tan(\frac{3\pi}{8}) > 1 \)) - Thus, \( f'(\frac{3\pi}{8}) > 0 \) → \( f(x) \) is increasing. ### Conclusion - The function \( f(x) = \tan x + \cot x \) is decreasing on the interval \( (0, \frac{\pi}{4}) \). - The function is increasing on the interval \( (\frac{\pi}{4}, \frac{\pi}{2}) \).
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Inverse Functions|6 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Graphical Representation of Functions|4 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Function. Domain of Definition|21 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

Find the intervals in which function f(x) = sin x-cos x, 0 lt x lt 2pi is (i) increasing, (ii) decreasing.

The primitive of the function f(x)= x | cos x| , when pi/2 lt x lt pi is given by

The minimum value of the function f(x)=2tan x+3cot x where x in(0 (pi)/(2)) is

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

Find the intervals in which the function f given by f(x)=sin x-cos x, 0 lt x lt 2 pi is strictly increasing or strictly decreasing.

The minimum value of the function f(x)=2tan x+3cot x where x in(0 ,(pi)/(2)) is

The minimum value of the function f(x)=2tan x+3cot x where x in(0, (pi)/(2)) is

Find the local maxima and local minima of the functions: (i) f(x) = (sin x - cos x), " When " 0 lt x lt (pi)/(2) (ii) f(x) = (2 cos x + x), " when " 0 lt x lt pi

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=