Home
Class 12
MATHS
Which of the given functions is (are) ev...

Which of the given functions is (are) even, odd, and which of them is (are) neither even, nor odd?
`f(x)=log x+sqrt(1+x^(2))`, (b) `f(x)=log ""(1-x)/(1+x)`
(c) `f(x)=2x^(3)-x+1`, (d) `f(x)=x""(a^(x)+1)/(a^(x)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given functions are even, odd, or neither, we will analyze each function step by step. ### Given Functions: 1. \( f(x) = \log x + \sqrt{1 + x^2} \) 2. \( f(x) = \log \left( \frac{1-x}{1+x} \right) \) 3. \( f(x) = 2x^3 - x + 1 \) 4. \( f(x) = \frac{x(a^x + 1)}{a^x - 1} \) ### Step-by-Step Analysis: #### Function (a): \( f(x) = \log x + \sqrt{1 + x^2} \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = \log(-x) + \sqrt{1 + (-x)^2} \] Since \( \log(-x) \) is undefined for real \( x \), we cannot evaluate \( f(-x) \). 2. **Conclusion**: Since \( f(-x) \) is undefined, \( f(x) \) is **neither even nor odd**. #### Function (b): \( f(x) = \log \left( \frac{1-x}{1+x} \right) \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = \log \left( \frac{1 - (-x)}{1 + (-x)} \right) = \log \left( \frac{1 + x}{1 - x} \right) \] 2. **Check if \( f(-x) = -f(x) \)**: \[ -f(x) = -\log \left( \frac{1-x}{1+x} \right) = \log \left( \frac{1+x}{1-x} \right) \] Thus, \( f(-x) = -f(x) \). 3. **Conclusion**: \( f(x) \) is an **odd function**. #### Function (c): \( f(x) = 2x^3 - x + 1 \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = 2(-x)^3 - (-x) + 1 = -2x^3 + x + 1 \] 2. **Check if \( f(-x) = -f(x) \)**: \[ -f(x) = -(2x^3 - x + 1) = -2x^3 + x - 1 \] Since \( f(-x) \neq -f(x) \) and \( f(-x) \neq f(x) \), it is neither even nor odd. 3. **Conclusion**: \( f(x) \) is **neither even nor odd**. #### Function (d): \( f(x) = \frac{x(a^x + 1)}{a^x - 1} \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = \frac{-x(a^{-x} + 1)}{a^{-x} - 1} = \frac{-x \left( \frac{1}{a^x} + 1 \right)}{\frac{1}{a^x} - 1} \] Simplifying gives: \[ f(-x) = \frac{-x(1 + a^x)}{1 - a^x} \] 2. **Check if \( f(-x) = f(x) \)**: We can see that: \[ f(-x) = -f(x) \] Thus, \( f(-x) = f(x) \). 3. **Conclusion**: \( f(x) \) is an **even function**. ### Summary of Results: - (a) **Neither even nor odd** - (b) **Odd** - (c) **Neither even nor odd** - (d) **Even**
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Inverse Functions|6 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Graphical Representation of Functions|4 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Function. Domain of Definition|21 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

Which of the following functions is (are) even, odd or neither: f(x)=log((1-x)/(1+x))

Find whether the following functions are even or odd or none f(x)=log(x+sqrt(1+x^(2)))

The function f(x)=log(x+sqrt(x^(2)+1)), is

Domain of f(x)=log(1-x)+sqrt(x^(2)-1)

Determine whether the following function are even/odd/neither even nor odd? f(x)=xlog(x+sqrt(x^(2)+1))

The function f(x)=log(x+sqrt(x^(2)+1)) is

Which of the following functions is (are) even and which is (are) odd? (a) f(x)=4-2x^(4)+sin^(2)x (b) f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2)) (c) f(x)=(1+a^(kx))/(1-a^(kx)) (d) f(x)=sin x +cos x, (e) f(x)=const.

Which of the following function is (are) even, odd,or neither? f(x)=x^(2)sin xf(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))f(x)=log((1-x)/(1+x))f(x)=log(x+sqrt(1+x^(2)))f(x)=sin x-cos xf(x)=(e^(x)+e^(-x))/(2)