Home
Class 12
MATHS
Indicate the amplitude |A|, frequency om...

Indicate the amplitude |A|, frequency `omega` initial phase `omega' and ` period T of the following harmonics:
(a) `f(x)=5 sin 4x`, (b) `f(x)=4 sin (3x+pi//4)`
(c) `f(x)=3 sin (x//2)+4 cos(x//2)`

Text Solution

Verified by Experts

The correct Answer is:
(a) `|A|=5, omega=4 omega=0, T=pi/2 ;` (b) `|A|=4, omega =3, omega =pi/4, T=(2pi)/(3); (c) |A|=5, omega=1/2, omega=arc tan ""4/3, T=4pi`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Inverse Functions|6 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Graphical Representation of Functions|4 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Function. Domain of Definition|21 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

f(x)=5+3sin x+4cos x

Find the period for each of the following functions (a) f(x)=sin^(4)x+cos^(4)x (b) f(x)=|cos x|

f (x) = ln (sin x) ^ (2) then f ((pi) / (4)) =

Find the period of the function f(x)=3sin((pi x)/(3))+4cos((pi x)/(4))

Find the resultant amplitude of the following simple harmonic equations : x_(1) = 5sin omega t x_(2) = 5 sin (omega t + 53^(@)) x_(3) = - 10 cos omega t

Prove the following Identities sin x +sin 2x + sin 4x +sin 5x = 4 cos(x/2).cos((3x)/2)sin3x

If f'(x)=a sin x+b cos x and f'(0)=4,f(0)=3,f((pi)/(2))=5, find f(x)

Period of f(x)=sin^(4)x+cos^(4)x