Home
Class 12
MATHS
Find the greatest value of the function ...

Find the greatest value of the function `f(x)=(2)/sqrt(2x^(2)-4x+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the function \( f(x) = \frac{2}{\sqrt{2x^2 - 4x + 3}} \), we can follow these steps: ### Step 1: Analyze the function The function \( f(x) \) is defined as \( f(x) = \frac{2}{\sqrt{g(x)}} \), where \( g(x) = 2x^2 - 4x + 3 \). To maximize \( f(x) \), we need to minimize \( g(x) \) since \( f(x) \) is inversely related to \( g(x) \). ### Step 2: Find the minimum of \( g(x) \) To find the minimum of \( g(x) = 2x^2 - 4x + 3 \), we can complete the square or use calculus. Here, we will complete the square: \[ g(x) = 2(x^2 - 2x) + 3 \] Now, complete the square for \( x^2 - 2x \): \[ x^2 - 2x = (x - 1)^2 - 1 \] Substituting this back, we have: \[ g(x) = 2((x - 1)^2 - 1) + 3 = 2(x - 1)^2 - 2 + 3 = 2(x - 1)^2 + 1 \] ### Step 3: Determine the minimum value of \( g(x) \) The expression \( 2(x - 1)^2 + 1 \) reaches its minimum when \( (x - 1)^2 = 0 \), which occurs at \( x = 1 \). Thus, the minimum value of \( g(x) \) is: \[ g(1) = 2(0) + 1 = 1 \] ### Step 4: Substitute the minimum value back into \( f(x) \) Now that we have the minimum value of \( g(x) \), we can find the maximum value of \( f(x) \): \[ f(x) = \frac{2}{\sqrt{g(x)}} \implies f(1) = \frac{2}{\sqrt{1}} = 2 \] ### Conclusion The greatest value of the function \( f(x) \) is \( \boxed{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Inverse Functions|6 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Graphical Representation of Functions|4 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Function. Domain of Definition|21 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

The greatest and the least value of the function, f(x)=sqrt(1-2x+x^(2))-sqrt(1+2x+x^(2)),x in(-oo,oo) are

The greatest, the least values of the function , f(x) =2-sqrt(1+2x+x^(2)), x in [-2,1] are respectively

Find the domain of the function f(x)=(x-3)/((x+3)sqrt(x^(2)-4))

Find the range of the function f(x)=2sqrt(x-2)+sqrt(4-x)

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval (0,(pi)/(2)) is (1)/(sqrt(2))(b)sqrt(2)(c)1(d)-sqrt(2)

The greatest value of function f(x)=(sin(2x))/(sin(x+(pi)/(4)))

The greatest value of the function f(x)=2.3^(3x)-3^(2x).4+2.3^(x) in the interval [-1,1] is

Find the greatest and least values of function f(x)=3x^(4)-8x^(3)-18x^(2)+1

If the greatest and least values of the function f(x)=x^(3)-6x^(2)+9x+1 on [0,2] are K and P ,then find the value of K^(4)+P^(8) .

Find the domain of the function: F(x)=(sqrt(9-x^(2)))/(sqrt(x^(2)-4))