Home
Class 12
MATHS
Which of the following functions are eve...

Which of the following functions are even, and which are odd :
(a) `f(x)=root3((1-x)^(2))+root3((1+x)^(2))`,
(b) `f(x)=x^(2)-|x|,`
(c) `f(x)=x sin^(2) x-x^(3),`
(d) `f(x)=(1+2^(x))^(2)//2^(x)?`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the given functions are even or odd, we will use the definitions of even and odd functions: - A function \( f(x) \) is **even** if \( f(-x) = f(x) \) for all \( x \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \) for all \( x \). Now, let's analyze each function step by step. ### (a) \( f(x) = \sqrt[3]{(1-x)^2} + \sqrt[3]{(1+x)^2} \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = \sqrt[3]{(1-(-x))^2} + \sqrt[3]{(1+(-x))^2} = \sqrt[3]{(1+x)^2} + \sqrt[3]{(1-x)^2} \] 2. **Compare \( f(-x) \) and \( f(x) \)**: \[ f(-x) = \sqrt[3]{(1+x)^2} + \sqrt[3]{(1-x)^2} = f(x) \] Thus, \( f(x) \) is **even**. ### (b) \( f(x) = x^2 - |x| \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = (-x)^2 - |-x| = x^2 - |x| \] 2. **Compare \( f(-x) \) and \( f(x) \)**: \[ f(-x) = x^2 - |x| = f(x) \] Thus, \( f(x) \) is **even**. ### (c) \( f(x) = x \sin^2 x - x^3 \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = (-x) \sin^2(-x) - (-x)^3 = -x \sin^2 x + x^3 \] (Note: \( \sin(-x) = -\sin x \) implies \( \sin^2(-x) = \sin^2 x \)) 2. **Compare \( f(-x) \) and \( f(x) \)**: \[ f(-x) = -x \sin^2 x + x^3 = -\left(x \sin^2 x - x^3\right) = -f(x) \] Thus, \( f(x) \) is **odd**. ### (d) \( f(x) = \frac{(1 + 2^x)^2}{2^x} \) 1. **Calculate \( f(-x) \)**: \[ f(-x) = \frac{(1 + 2^{-x})^2}{2^{-x}} = (1 + 2^{-x})^2 \cdot 2^x \] Expanding \( (1 + 2^{-x})^2 \): \[ = (1 + 2^{-x})^2 \cdot 2^x = (1 + 2^{-x})^2 \cdot 2^x = (1 + 2^{-x})^2 \cdot 2^x \] This simplifies to: \[ = \frac{(2^x + 1)^2}{2^x} = f(x) \] 2. **Compare \( f(-x) \) and \( f(x) \)**: \[ f(-x) = f(x) \] Thus, \( f(x) \) is **even**. ### Summary of Results: - (a) Even - (b) Even - (c) Odd - (d) Even
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Inverse Functions|6 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Graphical Representation of Functions|4 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Function. Domain of Definition|21 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

Which of the following functions is (are) even, odd or neither: f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))

Which of the following functions is (are) even, odd or neither: f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2))

If f(x)=root(3)((1-x^(2)))+root(3)((1+x^(2))) , then f(x) is :

Which of the following functions is (are) even and which is (are) odd? (a) f(x)=4-2x^(4)+sin^(2)x (b) f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2)) (c) f(x)=(1+a^(kx))/(1-a^(kx)) (d) f(x)=sin x +cos x, (e) f(x)=const.

Which of the following functions are odd or even or neither: (i) f(x) = tan x + 3 cosec x +x (ii) f(x) = |x| +1 (iii) f(x) = |x-2|

Which of the given functions is (are) even, odd, and which of them is (are) neither even, nor odd? f(x)=log x+sqrt(1+x^(2)) , (b) f(x)=log ""(1-x)/(1+x) (c) f(x)=2x^(3)-x+1 , (d) f(x)=x""(a^(x)+1)/(a^(x)-1)

Which of the following function from Z to itself are bijections? f(x)=x^(3)( b) f(x)=x+2f(x)=2x+1( d )f(x)=x^(2)+x

Find the domain of the following functions (a) f(x)=(1)/(sqrt(x-2)) " (b) " f(x)=(1)/(x^(3)-x) (c ) f(x)= root(3)(x^(2)-2)