Home
Class 12
MATHS
Show that the functions f(x)=x^(2)-x+1, ...

Show that the functions `f(x)=x^(2)-x+1, x ge 1/2 and phi(x)=1/2+sqrt(x-3/4)` and mutually inverse and solve the equation `x^(2)-x+1=1/2 +sqrt(x-3/4)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Graphical Representation of Functions|4 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Number Sequences. Limit of a Sequence|9 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Investigation of Functions|15 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

Solve the equation x^(2)-x+1=(1)/(2)+sqrt(x-(3)/(4)), where x>=(3)/(4)

Let f:[(1)/(2),oo)rarr[(3)/(4),oo), where f(x)=x^(2)-x+1. Find the inverse of f(x) Hence or otherwise solve the equation,x^(2)-x+1=(1)/(2)+sqrt(x-(3)/(4))

Solve the equation sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4).

Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

The function f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2)) is

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+(1)/(sqrt(x^(2)-1))