Home
Class 12
MATHS
Prove that underset( n rarr oo)lim x(n)=...

Prove that `underset( n rarr oo)lim x_(n)=1, if x_(n)=(3^(n)+1)/3^(n)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Evaluation of Limits of Sequences|5 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Testing Sequences for Convergence|8 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Graphical Representation of Functions|4 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

Taking advantage of the theorem on passing to the limit in inequalities, prove that underset(n to oo)lim x_(n)=1 if x_(n)=2n(sqrt(n^(2)+1)-n)

Solve underset( n rarr oo)("lim") x_(n) , when x_(n)^(2) = a+ x_(n-1) and x_(0) = sqrt( a)

lim_ (n rarr oo) (x ^ (n)) / (n!)

underset( n rarr oo) ( "Lim") ( -3n + (-1)^(n))/(4n-(-1)^(n)) is

lim_ (n rarr oo) [(n!) / (n ^ (n))] ^ ((1) / (n))

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr -oo)("Lim") f(x)

lim_ (n rarr oo) (1) / (1 + x ^ (n))

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))