Home
Class 12
MATHS
Prove that the following sequences conve...

Prove that the following sequences converage and find their limits:
(a) `x_(1)=sqrt2, x_(2)=sqrt(2+sqrt2), x_(3)=sqrt(2+sqrt(2+sqrt2)),....., x_(n)=sqrt((2+sqrt(2+.....2))).....`
(b) `x_(n)=(2^(n))/((n+2)!)`
(c) `x_(n)=(E(ny))`
the sequence of successive decimal appromations 1:1:4,, 1.41, 1.414, of the irratioanl number `sqrt2`
(e) `x_n=(n!)/(n^(n))`.

Text Solution

Verified by Experts

The correct Answer is:
(b) 0
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise The Limit of a Function|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Calculation of Limits of Functions|12 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Evaluation of Limits of Sequences|5 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr4)(sqrt(2n+1)-3)/(sqrt(n-1)-sqrt(2))

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))

lim _( x to oo) (1)/(sqrtn sqrt(n+1))+ (1)/(sqrtn sqrt(n+2)) is equal to :

Let the variable x_(n), be determined by the following law of formation 0x_(0)=sqrt(a)x_(0)=sqrt(a),x_(1)=sqrt(a+sqrt(a))x_(2)=sqrt(a+sqrt(a+sqrt(a))) and x_(3)=sqrt(a+sqrt(a+sqrt(a+sqrt(a)))) then find lim_(n rarr1)x_(n)

Evaluate the following limit: (lim)_(n rarr oo){sqrt(x+1)-sqrt(x)}sqrt(x+2)

lim_(n rarr oo)(sqrt(n+1)+sqrt(n+2)+.........+sqrt(2n-1))/(n^((3)/(2) ))