Home
Class 12
MATHS
Prove that the sequence x(1)=sqrtx, x(2)...

Prove that the sequence `x_(1)=sqrtx, x_(2)=sqrt(a+sqrta)`,
`x_(3)=sqrt(a+sqrt(+sqrt(a)), x_(n)=sqrt(a+sqrt(a+.....+sqrta))` has the limits `b=(sqrt(4a+1)+1)//2`

Text Solution

Verified by Experts

The correct Answer is:
s
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise The Limit of a Function|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Calculation of Limits of Functions|12 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Evaluation of Limits of Sequences|5 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

sqrt(x)-1/sqrt(x)= x=2-sqrt(3)

Let the variable x_(n), be determined by the following law of formation 0x_(0)=sqrt(a)x_(0)=sqrt(a),x_(1)=sqrt(a+sqrt(a))x_(2)=sqrt(a+sqrt(a+sqrt(a))) and x_(3)=sqrt(a+sqrt(a+sqrt(a+sqrt(a)))) then find lim_(n rarr1)x_(n)

sqrt(a +b -2 sqrt(ab)) is ____ where sqrta gt sqrtb

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

Evaluate: ("lim")_(xvec1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrt(x)))+sqrt(sqrt(sqrt(sqrt(x-4)))))/(x-1)

sqrt(4-sqrt(1-x))-sqrt(2-x)>0

Solve the equation sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4).

If x=5+2sqrt(6), then sqrt(x)-(1)/(sqrt(x)) is a.2sqrt(2)b2sqrt(3)c*sqrt(3)+sqrt(2)d*sqrt(3)-sqrt(2)