Home
Class 12
MATHS
Prove that as x to 1, the functions f(x)...

Prove that as `x to 1`, the functions `f(x)={{:(,x+1, 0 le x lt 1),(,3x+2, 1 lt x le3):}` has a limit to the left equal to 2 and a limit to the right equal to 5.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Continuity of a Function|2 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Arithmetical Operations on Continous Function, Continuity of a Composite Functions|2 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Equivalent Infinitesimals.|4 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Prove that the function f(x)={{:(,x+1,at ,-1 le x le0),(,-x,at,0 lt x le 1):} is discontinuous at the point x=0 and still has the maximum and the minimum value on [-1,1].

If f(x) = {(2,,,0 le x lt 1),(c-2x,,,1 le x le 2):} is continuous at x = 1 , then c equals

If f(x)={{:(,(x^(2))/(2),0 le x lt 1),(,2x^(2)-3x+(3)/(2),1 le x le 2):} then,

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2