Home
Class 12
MATHS
Find the one-sided limits of the followi...

Find the one-sided limits of the following functions as `x to 0`
(a) `f(x)=(1)/(2-2^(1//x))`
(b) `f(x)=e^(1//x)`.
(c ) `f(x)=(|sin x|)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the one-sided limits of the given functions as \( x \) approaches \( 0 \), we will analyze each function separately. ### (a) \( f(x) = \frac{1}{2 - 2^{\frac{1}{x}}} \) **Step 1: Find the left-hand limit as \( x \to 0^- \)** When \( x \) approaches \( 0 \) from the left, \( \frac{1}{x} \) approaches \( -\infty \). Therefore, \( 2^{\frac{1}{x}} \) approaches \( 0 \). \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1}{2 - 2^{\frac{1}{x}}} = \frac{1}{2 - 0} = \frac{1}{2} \] **Step 2: Find the right-hand limit as \( x \to 0^+ \)** When \( x \) approaches \( 0 \) from the right, \( \frac{1}{x} \) approaches \( +\infty \). Therefore, \( 2^{\frac{1}{x}} \) approaches \( +\infty \). \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{2 - 2^{\frac{1}{x}}} = \frac{1}{2 - \infty} = 0 \] ### Summary for (a): - Left-hand limit: \( \frac{1}{2} \) - Right-hand limit: \( 0 \) ### (b) \( f(x) = e^{\frac{1}{x}} \) **Step 1: Find the left-hand limit as \( x \to 0^- \)** When \( x \) approaches \( 0 \) from the left, \( \frac{1}{x} \) approaches \( -\infty \). \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} e^{\frac{1}{x}} = e^{-\infty} = 0 \] **Step 2: Find the right-hand limit as \( x \to 0^+ \)** When \( x \) approaches \( 0 \) from the right, \( \frac{1}{x} \) approaches \( +\infty \). \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{\frac{1}{x}} = e^{+\infty} = \infty \] ### Summary for (b): - Left-hand limit: \( 0 \) - Right-hand limit: \( \infty \) ### (c) \( f(x) = \frac{|\sin x|}{x} \) **Step 1: Find the left-hand limit as \( x \to 0^- \)** As \( x \) approaches \( 0 \) from the left, \( |\sin x| \) approaches \( 0 \) and \( x \) approaches \( 0 \) (negative). \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{|\sin x|}{x} = \lim_{x \to 0^-} \frac{-\sin(-x)}{-x} = \lim_{x \to 0^-} \frac{\sin(-x)}{-x} = \lim_{h \to 0} \frac{\sin h}{h} = 1 \] **Step 2: Find the right-hand limit as \( x \to 0^+ \)** As \( x \) approaches \( 0 \) from the right, \( |\sin x| \) approaches \( 0 \) and \( x \) approaches \( 0 \) (positive). \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{|\sin x|}{x} = \lim_{x \to 0^+} \frac{\sin x}{x} = 1 \] ### Summary for (c): - Left-hand limit: \( 1 \) - Right-hand limit: \( 1 \) ### Final Results: - (a) Left: \( \frac{1}{2} \), Right: \( 0 \) - (b) Left: \( 0 \), Right: \( \infty \) - (c) Left: \( 1 \), Right: \( 1 \)
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Continuity of a Function|2 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Arithmetical Operations on Continous Function, Continuity of a Composite Functions|2 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Equivalent Infinitesimals.|4 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • THE DEFINITE INTEGRAL

    IA MARON|Exercise 6 . 8 (Additional Problems)|3 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the following functions (a) f(x)=(1)/(sqrt(x-2)) " (b) " f(x)=(1)/(x^(3)-x) (c ) f(x)= root(3)(x^(2)-2)

Let A={x:-1 le x le 1}=B be a function f: A to B. Then find the nature of each of the following functions. (i) f(x) = |x| " (ii) " f(x)=x|x| (iii) f(x)=x^(3) " (iv) " f(x)="sin"(pi x)/(2)

Find the range of the following functions. (a) f(x)=5-7x " (b) "f(x)=5-x^(2) (c ) f(x)=(x^(2))/(x^(2)+1)

Find the range of the following functions: f(x)=log_(e)(sin x^(sin x)+1) where *0

Find the domain of each of the following functions: f(x)=sin^(-1)x^(2) (ii) f(x)=sin^(-1)x+sin x