Home
Class 12
MATHS
Prove that cos theta =(cos alpha- cos be...

Prove that `cos theta =(cos alpha- cos beta)/(1 -cos alpha*cos beta) ⇔ tan theta/2 = pm tan alpha/2 *cot beta/2`.

Answer

Step by step text solution for Prove that cos theta =(cos alpha- cos beta)/(1 -cos alpha*cos beta) ⇔ tan theta/2 = pm tan alpha/2 *cot beta/2. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos
  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos

Similar Questions

Explore conceptually related problems

If cos theta=(cos alpha-cos beta)/(1-cos alpha*cos beta), prove that tan(theta)/(2)=+-(tan alpha)/(2)(cot beta)/(2)

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that (tan theta)/(2)=+-(tan alpha)/(2)(cot beta)/(2)

Knowledge Check

  • If cos theta = ( cos alpha - cos beta )/( 1-cos alpha cos beta ) , then tan "" ( theta )/( 2) =

    A
    `+- tan ( alpha //2) tan ( beta //2)`
    B
    `+- tan ( alpha // 2 ) cot ( beta //2)`
    C
    `+- tan ( beta //2) cot ( alpha //2)`
    D
    none
  • If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then one of the values of tan ((theta )/(2)) is

    A
    `cot "" beta/2 tan "" alpha /2`
    B
    `tan alpha tan "" beta/2`
    C
    `tan ""beta/2 cot "" alpha/2`
    D
    `tan ^(2) "" alpha/ 2 tan ^(2)"" beta/2`
  • If : 1+sin alpha * sin beta-cos alpha* cos beta=0" ""then" : tan alpha*cot beta=

    A
    -3
    B
    -2
    C
    -1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If cos theta=(cos alpha+cos beta)/(1+cos alpha cos beta), prove that (tan theta)/(2)=-(tan alpha)/(2)(tan beta)/(2)

    Prove that cos(alpha-beta)/(cos alpha sin beta)=tan alpha+cot beta

    cos theta = (cos alpha-cos beta) / (1-cos alpha * cos beta) rArr tan ^ (2) ((theta) / (2)) tan ^ (2) ((beta) / (2))

    (cos^2alpha-cos^2beta)/(cos^2alpha cos^2beta)=tan^2beta-tan^2alpha

    cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=