Home
Class 12
MATHS
Prove that sin ((23pi)/24) = sqrt((2 sqr...

Prove that `sin ((23pi)/24) = sqrt((2 sqrt2 - sqrt3 -1)/(4 sqrt2))`

Answer

Step by step text solution for Prove that sin ((23pi)/24) = sqrt((2 sqrt2 - sqrt3 -1)/(4 sqrt2)) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos
  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos

Similar Questions

Explore conceptually related problems

Prove that tan(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that tan7 1^circ/2 = sqrt6 - sqrt3 + sqrt2 - 2 .

Knowledge Check

  • If sin((23pi)/(24))=sqrt((2sqrtp-sqrtq-1)/(4sqrtr)) , then the value of (p^(2)+q^(2)-r^(2)) is equal to

    A
    6
    B
    12
    C
    `-1`
    D
    9
  • Similar Questions

    Explore conceptually related problems

    Show that tan pi/16 = sqrt(4 +2 sqrt2) - (sqrt2+1) .

    Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

    Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

    Prove that: tan(pi)/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

    Prove that: "tan" 142(1^(@))/(2)=2+sqrt2-sqrt3-sqrt6 .

    cot((pi)/(24))=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

    Prove that 2 "cos" pi/16=sqrt(2+sqrt(2+sqrt2))