Home
Class 12
MATHS
The value of cos^(2)x + cos^(2) (pi/3 + ...

The value of `cos^(2)x + cos^(2) (pi/3 + x) - cos x *cos(pi/3+ x)` is

A

cos 2x

B

`sin^(2)x`

C

`3/4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2 x + \cos^2 \left( \frac{\pi}{3} + x \right) - \cos x \cdot \cos \left( \frac{\pi}{3} + x \right) \), we will follow these steps: ### Step 1: Rewrite the expression We can rearrange the expression as follows: \[ \cos^2 x + \cos^2 \left( \frac{\pi}{3} + x \right) - \cos x \cdot \cos \left( \frac{\pi}{3} + x \right) \] ### Step 2: Use the cosine addition formula Recall the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Using this, we can expand \( \cos \left( \frac{\pi}{3} + x \right) \): \[ \cos \left( \frac{\pi}{3} + x \right) = \cos \frac{\pi}{3} \cos x - \sin \frac{\pi}{3} \sin x \] Substituting the known values \( \cos \frac{\pi}{3} = \frac{1}{2} \) and \( \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \): \[ \cos \left( \frac{\pi}{3} + x \right) = \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \] ### Step 3: Substitute back into the expression Now substitute this back into the expression: \[ \cos^2 x + \cos^2 \left( \frac{\pi}{3} + x \right) - \cos x \left( \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \right) \] ### Step 4: Expand \( \cos^2 \left( \frac{\pi}{3} + x \right) \) Next, we need to calculate \( \cos^2 \left( \frac{\pi}{3} + x \right) \): \[ \cos^2 \left( \frac{\pi}{3} + x \right) = \left( \frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x \right)^2 \] Expanding this gives: \[ = \frac{1}{4} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x + \frac{3}{4} \sin^2 x \] ### Step 5: Combine all terms Now combine all the terms: \[ \cos^2 x + \left( \frac{1}{4} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x + \frac{3}{4} \sin^2 x \right) - \left( \frac{1}{2} \cos^2 x - \frac{\sqrt{3}}{2} \cos x \sin x \right) \] ### Step 6: Simplify the expression Combine like terms: 1. For \( \cos^2 x \): \[ \cos^2 x + \frac{1}{4} \cos^2 x - \frac{1}{2} \cos^2 x = \frac{3}{4} \cos^2 x \] 2. For \( \sin^2 x \): \[ \frac{3}{4} \sin^2 x \] 3. For \( \cos x \sin x \): \[ -\frac{\sqrt{3}}{2} \cos x \sin x + \frac{\sqrt{3}}{2} \cos x \sin x = 0 \] ### Step 7: Final expression Thus, we have: \[ \frac{3}{4} \cos^2 x + \frac{3}{4} \sin^2 x = \frac{3}{4} (\cos^2 x + \sin^2 x) \] Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ = \frac{3}{4} \cdot 1 = \frac{3}{4} \] ### Final Answer The value of the expression is \( \frac{3}{4} \).
Promotional Banner

Topper's Solved these Questions

  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos
  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

Find the value of cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))

Prove that the function: f(x)=cos^2x+cos^2(pi/3+x)-cosx*cos(pi/3+x) is constant function. Find the value of that constant

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

The range of cos^(2)(2(pi)/(3)-x)+cos^(2)(2(pi)/(3)+x) is

Extreme values of 4cos^(2)(x^(2))cos((pi)/(3)+x^(2))*cos((pi)/(3)-x^(2)) over R.

The maximum value of cos^(2)((pi)/(3)-x)-cos^(2)((pi)/(3)+x), is

The greatest value of cos^(2)((pi)/(3)-x)-cos^(2)((pi)/(3)+x) is

A DAS GUPTA-Circular Functions, Identities -Exercise
  1. The number of real values of x for which sin(e^x) = 5^(x)+5^(-x) is

    Text Solution

    |

  2. If cot y= (sin x- sin z)/(cos z- cos x) then which of the following ...

    Text Solution

    |

  3. The value of cos^(2)x + cos^(2) (pi/3 + x) - cos x *cos(pi/3+ x) is

    Text Solution

    |

  4. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  5. If tan ((pi)/(4) + theta) + tan ((pi )/(4) - theta) = p sec 2 theta) t...

    Text Solution

    |

  6. The value of sin sqrt(x^(2) - pi^(2)/36) lies in the interval

    Text Solution

    |

  7. If alpha, beta are two values lying between 0 and 2pi for which tan t...

    Text Solution

    |

  8. sin theta = x + 1/x is possible for some real values of x.

    Text Solution

    |

  9. Is (sec x + tan x + 1)(sec x - tan x - 1) - 2tan x = 0 an identity.

    Text Solution

    |

  10. The maximum value of 5cos theta + 12 sin theta is 17. This statement ...

    Text Solution

    |

  11. If x = rsin theta*cos phi, y = rsin theta*sin phi and z = rcos theta ...

    Text Solution

    |

  12. The minimum value of 3 cos x+4 sin x+8 is:

    Text Solution

    |

  13. tan 22 1^circ/2 is a root of the equation - (1+x^(2))/(1- x^(2)) = sq...

    Text Solution

    |

  14. If tan theta= 2 is satisfied by alpha, beta then the value of frac{tan...

    Text Solution

    |

  15. sin 1^circ lt sin 1. Given statement is true or false.

    Text Solution

    |

  16. If sin alpha = -3/5,pi lt alpha lt 3pi/2 then cos alpha/2 = 1/sqrt10

    Text Solution

    |

  17. If (1)/(x + y) = (1)/(2) and (1)/(x -y) = (1)/(3), then x = and y =

    Text Solution

    |

  18. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |

  19. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |

  20. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |