Home
Class 12
MATHS
If alpha = theta1 +theta2 and x = theta1...

If `alpha = theta_1 +theta_2` and `x = theta_1 -theta_2` and `tan theta_1 = lambda tan theta_2` then `sin x: sin alpha` is equal to ______

A

`(lambda+1)/(lambda-1)`

B

`(lambda-1)/(lambda+1)`

C

`1/lambda`

D

`lambda/(lambda+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{\sin x}{\sin \alpha} \) given the relationships between \( \alpha \), \( x \), \( \theta_1 \), and \( \theta_2 \). ### Step-by-Step Solution: 1. **Define the Variables**: We have: \[ \alpha = \theta_1 + \theta_2 \] \[ x = \theta_1 - \theta_2 \] And we are given: \[ \tan \theta_1 = \lambda \tan \theta_2 \] 2. **Express \( \theta_1 \) and \( \theta_2 \)**: From the definitions of \( \alpha \) and \( x \), we can express \( \theta_1 \) and \( \theta_2 \) in terms of \( \alpha \) and \( x \): - Adding the equations: \[ \alpha + x = 2\theta_1 \implies \theta_1 = \frac{\alpha + x}{2} \] - Subtracting the equations: \[ \alpha - x = 2\theta_2 \implies \theta_2 = \frac{\alpha - x}{2} \] 3. **Substituting into the Tangent Equation**: Substitute \( \theta_1 \) and \( \theta_2 \) into the equation \( \tan \theta_1 = \lambda \tan \theta_2 \): \[ \tan\left(\frac{\alpha + x}{2}\right) = \lambda \tan\left(\frac{\alpha - x}{2}\right) \] 4. **Using the Tangent Addition and Subtraction Formulas**: We can use the tangent addition and subtraction formulas: \[ \tan\left(\frac{\alpha + x}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{x}{2}\right)} \] \[ \tan\left(\frac{\alpha - x}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{x}{2}\right)} \] 5. **Setting Up the Ratio**: We want to find \( \frac{\sin x}{\sin \alpha} \). We can use the identity: \[ \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] \[ \sin \alpha = 2 \sin\left(\frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right) \] Therefore, the ratio becomes: \[ \frac{\sin x}{\sin \alpha} = \frac{2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)}{2 \sin\left(\frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right)} = \frac{\sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)}{\sin\left(\frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{2}\right)} \] 6. **Final Expression**: Thus, the final expression for the ratio \( \frac{\sin x}{\sin \alpha} \) simplifies to: \[ \frac{\sin x}{\sin \alpha} = \frac{\tan\left(\frac{x}{2}\right)}{\tan\left(\frac{\alpha}{2}\right)} \] ### Final Answer: The ratio \( \frac{\sin x}{\sin \alpha} \) is equal to \( \frac{\tan\left(\frac{x}{2}\right)}{\tan\left(\frac{\alpha}{2}\right)} \).
Promotional Banner

Topper's Solved these Questions

  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos
  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos

Similar Questions

Explore conceptually related problems

(iii) tan theta-sin theta=sin theta tan theta-1

cos theta(tan theta+2)(2tan theta+1)=2sec theta+5sin theta

cos theta(tan theta+2)(2tan theta+1)=2sec theta+5sin theta

cos theta(tan theta+2)(2tan theta+1)=2sec theta+5sin theta

If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( cos ( 2 theta + alpha)) and tan 2 theta = lamda tan ( 3theta + alpha) then the value of lamda is ____________.

If tan alpha=(sin theta-cos theta)/(sin theta+cos theta) then sin alpha

If sec theta-tan theta=x and sectheta+tan theta=1/x then class sin theta and cos theta

(i) tan3 theta tan7 theta + 1 = 0 (ii) sin ^ (2) theta = sin ^ (2) alpha

A DAS GUPTA-Circular Functions, Identities -Exercise
  1. sec^(2)theta = frac{4xy}{(x+y)^(2)} is true if and only if

    Text Solution

    |

  2. If cos theta + sec theta = 2 then cos^(n)theta+ sec^(n)theta is equal ...

    Text Solution

    |

  3. If alpha = theta1 +theta2 and x = theta1 -theta2 and tan theta1 = lamb...

    Text Solution

    |

  4. If ABCD is a cyclic quadrilateral then cos A + cos B + cos C + cos D ...

    Text Solution

    |

  5. tan 40^@ + 2tan 10^@ is equal to

    Text Solution

    |

  6. If cos(alpha + gamma)/cos(alpha - gamma) = cos 2beta then tan alpha, t...

    Text Solution

    |

  7. The value of sqrt3 cosec 20^circ - sec 20^circ is equal to

    Text Solution

    |

  8. The number of real values of x for which sin(e^x) = 5^(x)+5^(-x) is

    Text Solution

    |

  9. If cot y= (sin x- sin z)/(cos z- cos x) then which of the following ...

    Text Solution

    |

  10. What is the real part of ( sin x + icos x )^(3), where i= sqrt( -1) ?

    Text Solution

    |

  11. If alpha, beta be the solutions of theta for the equation a tan theta...

    Text Solution

    |

  12. The value of cos^(2)x + cos^(2) (pi/3 + x) - cos x *cos(pi/3+ x) is

    Text Solution

    |

  13. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  14. If tan theta + tan (pi/3 +theta) + tan (frac{2pi}{3}+ theta) = k tan 3...

    Text Solution

    |

  15. The value of sin sqrt(x^(2) - pi^(2)/36) lies in the interval

    Text Solution

    |

  16. If alpha, beta are two values lying between 0 and 2pi for which tan t...

    Text Solution

    |

  17. (2+sin 2x)/(1+cos 2x) e^(x)

    Text Solution

    |

  18. sin theta = x + 1/x is possible for some real values of x.

    Text Solution

    |

  19. Is (sec x + tan x + 1)(sec x - tan x - 1) - 2tan x = 0 an identity.

    Text Solution

    |

  20. If a1 +a2cos 2x + a3sin^(2)x = 0 be true for all x then a1, a2 and a3...

    Text Solution

    |