Home
Class 12
MATHS
If tan theta + tan (pi/3 +theta) + tan (...

If `tan theta + tan (pi/3 +theta) + tan (frac{2pi}{3}+ theta) = k tan 3theta` then k is equal to

A

1

B

`1/3`

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \tan \left( \frac{\pi}{3} + \theta \right) + \tan \left( \frac{2\pi}{3} + \theta \right) = k \tan 3\theta \), we will follow these steps: ### Step 1: Use the tangent addition formula We know that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] We will apply this formula to find \( \tan \left( \frac{\pi}{3} + \theta \right) \) and \( \tan \left( \frac{2\pi}{3} + \theta \right) \). ### Step 2: Calculate \( \tan \left( \frac{\pi}{3} + \theta \right) \) Using the formula: \[ \tan \left( \frac{\pi}{3} + \theta \right) = \frac{\tan \frac{\pi}{3} + \tan \theta}{1 - \tan \frac{\pi}{3} \tan \theta} \] Since \( \tan \frac{\pi}{3} = \sqrt{3} \), we have: \[ \tan \left( \frac{\pi}{3} + \theta \right) = \frac{\sqrt{3} + \tan \theta}{1 - \sqrt{3} \tan \theta} \] ### Step 3: Calculate \( \tan \left( \frac{2\pi}{3} + \theta \right) \) Using the formula: \[ \tan \left( \frac{2\pi}{3} + \theta \right) = \frac{\tan \frac{2\pi}{3} + \tan \theta}{1 - \tan \frac{2\pi}{3} \tan \theta} \] Since \( \tan \frac{2\pi}{3} = -\sqrt{3} \), we have: \[ \tan \left( \frac{2\pi}{3} + \theta \right) = \frac{-\sqrt{3} + \tan \theta}{1 + \sqrt{3} \tan \theta} \] ### Step 4: Combine the three tangent terms Now we can write: \[ LHS = \tan \theta + \tan \left( \frac{\pi}{3} + \theta \right) + \tan \left( \frac{2\pi}{3} + \theta \right) \] Substituting the values we calculated: \[ LHS = \tan \theta + \frac{\sqrt{3} + \tan \theta}{1 - \sqrt{3} \tan \theta} + \frac{-\sqrt{3} + \tan \theta}{1 + \sqrt{3} \tan \theta} \] ### Step 5: Simplify the expression To combine these fractions, we will find a common denominator: \[ LHS = \tan \theta + \frac{(\sqrt{3} + \tan \theta)(1 + \sqrt{3} \tan \theta) + (-\sqrt{3} + \tan \theta)(1 - \sqrt{3} \tan \theta)}{(1 - \sqrt{3} \tan \theta)(1 + \sqrt{3} \tan \theta)} \] ### Step 6: Expand and simplify the numerator Expanding the numerator: \[ (\sqrt{3} + \tan \theta)(1 + \sqrt{3} \tan \theta) = \sqrt{3} + 3 \tan^2 \theta + \tan \theta \] \[ (-\sqrt{3} + \tan \theta)(1 - \sqrt{3} \tan \theta) = -\sqrt{3} + 3 \tan^2 \theta - \tan \theta \] Combining these gives: \[ 2\sqrt{3} + 6\tan^2 \theta \] ### Step 7: Final expression and equate to \( k \tan 3\theta \) Now we have: \[ LHS = \tan \theta + \frac{2\sqrt{3} + 6\tan^2 \theta}{1 - 3\tan^2 \theta} \] We know that: \[ \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \] Setting \( LHS = k \tan 3\theta \) and simplifying gives us \( k = 3 \). ### Final Answer Thus, the value of \( k \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos
  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos

Similar Questions

Explore conceptually related problems

If tan theta + tan((pi)/(3)+theta) + tan((-pi)/(3)+theta) = ktan 3 theta then the value of k is

If: tan theta + tan(pi/2 - theta)=2 , then: theta =

Solve tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

tan theta tan((pi)/(3)+theta)tan((pi)/(3)-theta)=tan3 theta

If: tan theta + tan 2theta = tan 3theta , then: theta =

If tan ((pi)/(4) + theta) + tan ((pi )/(4) - theta) = p sec 2 theta) then the vlaue of p is equal to :

A DAS GUPTA-Circular Functions, Identities -Exercise
  1. The value of cos^(2)x + cos^(2) (pi/3 + x) - cos x *cos(pi/3+ x) is

    Text Solution

    |

  2. The equation (cos p-1) x^(2) + cos p*x + sin p = 0 where x is a varia...

    Text Solution

    |

  3. If tan theta + tan (pi/3 +theta) + tan (frac{2pi}{3}+ theta) = k tan 3...

    Text Solution

    |

  4. The value of sin sqrt(x^(2) - pi^(2)/36) lies in the interval

    Text Solution

    |

  5. If alpha, beta are two values lying between 0 and 2pi for which tan t...

    Text Solution

    |

  6. (2+sin 2x)/(1+cos 2x) e^(x)

    Text Solution

    |

  7. sin theta = x + 1/x is possible for some real values of x.

    Text Solution

    |

  8. Is (sec x + tan x + 1)(sec x - tan x - 1) - 2tan x = 0 an identity.

    Text Solution

    |

  9. If a1 +a2cos 2x + a3sin^(2)x = 0 be true for all x then a1, a2 and a3...

    Text Solution

    |

  10. The maximum value of 5cos theta + 12 sin theta is 17. Given statement ...

    Text Solution

    |

  11. If cos x + cos y- cos(x +y) = 3/2 then x=y is possible.

    Text Solution

    |

  12. If x = rsin theta*cos phi, y = rsin theta*sin phi and z = rcos theta ...

    Text Solution

    |

  13. The minimum value of 3cos x + 4sin x + 5 is 0. Given statement is true...

    Text Solution

    |

  14. tan 22 1^circ/2 is a root of the equation - (1+x^(2))/(1- x^(2)) = sq...

    Text Solution

    |

  15. If tan theta= 2 is satisfied by alpha, beta then the value of frac{tan...

    Text Solution

    |

  16. Prove that sin 1^circ lt sin 1.

    Text Solution

    |

  17. If sin alpha = -3/5,pi lt alpha lt 3pi/2 then cos alpha/2 = 1/sqrt10

    Text Solution

    |

  18. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |

  19. If sin 17^circ *sin 43^circ *sin 77^circ = lambda sin 51^circ then lam...

    Text Solution

    |

  20. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |