Home
Class 12
MATHS
If frac {x}{cos theta} = frac {y}{cos(t...

If `frac {x}{cos theta} = frac {y}{cos(theta -(2pi)/3)} = frac {z}{cos(theta +(2pi)/3)}` then x + y + z is equal to

A

`3 cos theta`

B

`cos 3theta`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{x}{\cos \theta} = \frac{y}{\cos(\theta - \frac{2\pi}{3})} = \frac{z}{\cos(\theta + \frac{2\pi}{3})} \] Let us denote this common value as \( k \). Therefore, we can express \( x \), \( y \), and \( z \) in terms of \( k \): 1. From the first equation, we have: \[ x = k \cos \theta \] 2. From the second equation, we have: \[ y = k \cos\left(\theta - \frac{2\pi}{3}\right) \] 3. From the third equation, we have: \[ z = k \cos\left(\theta + \frac{2\pi}{3}\right) \] Now, we need to find \( x + y + z \): \[ x + y + z = k \cos \theta + k \cos\left(\theta - \frac{2\pi}{3}\right) + k \cos\left(\theta + \frac{2\pi}{3}\right) \] We can factor out \( k \): \[ x + y + z = k \left( \cos \theta + \cos\left(\theta - \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{2\pi}{3}\right) \right) \] Next, we will simplify the expression inside the parentheses. We can use the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Let \( A = \theta - \frac{2\pi}{3} \) and \( B = \theta + \frac{2\pi}{3} \): - The average is: \[ \frac{A + B}{2} = \frac{(\theta - \frac{2\pi}{3}) + (\theta + \frac{2\pi}{3})}{2} = \frac{2\theta}{2} = \theta \] - The difference is: \[ \frac{A - B}{2} = \frac{(\theta - \frac{2\pi}{3}) - (\theta + \frac{2\pi}{3})}{2} = \frac{-\frac{4\pi}{3}}{2} = -\frac{2\pi}{3} \] Thus, we have: \[ \cos\left(\theta - \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{2\pi}{3}\right) = 2 \cos\left(\theta\right) \cos\left(-\frac{2\pi}{3}\right) \] Now, we know that: \[ \cos\left(-\frac{2\pi}{3}\right) = -\cos\left(\frac{2\pi}{3}\right) = -\left(-\frac{1}{2}\right) = \frac{1}{2} \] So, we can substitute this back into our equation: \[ \cos\left(\theta - \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{2\pi}{3}\right) = 2 \cos \theta \cdot \frac{1}{2} = \cos \theta \] Now substituting this back into our expression for \( x + y + z \): \[ x + y + z = k \left( \cos \theta + \cos \theta \right) = k \cdot 2 \cos \theta \] Now, we need to find \( k \). Since \( k \) is a common factor, we can express it in terms of \( x \), \( y \), or \( z \). However, we can also evaluate \( \cos\left(\theta - \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{2\pi}{3}\right) \) directly: \[ \cos\left(\theta - \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{2\pi}{3}\right) = 0 \] Thus, we conclude: \[ x + y + z = k \cdot 0 = 0 \] So, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • Circular Functions, Identities

    A DAS GUPTA|Exercise Exercise|300 Videos
  • Circles

    A DAS GUPTA|Exercise EXERCISE|122 Videos
  • COMPLEX NUMBERS

    A DAS GUPTA|Exercise EXERCISE|224 Videos

Similar Questions

Explore conceptually related problems

If (x)/(cos theta)=(y)/(cos(theta-(2pi)/(2)))=(2)/(cos(theta+(2pi)/(3))), then x+y+z=

If x cos theta=y cos(theta+(2 pi)/(3))=z cos(theta+(4 pi)/(3)), prove that xy+yz+zx=0

If x*cos theta=y*cos(theta+(2 pi)/(3))=2*cos(theta+(4 pi)/(3)) then evaluate xy+yz+zx

If (x)/(cos theta)=(y)/(cos(theta-(2 pi)/(3)))=(z)/(cos(theta+(2 pi)/(3))) then x+y+z is (a)1(b)0(c)-1(d) none of these

frac(sin theta )(1 + cos theta) + frac(1 + cos theta)(sin theta) ?

If x cos theta=y cos(theta+(2 pi)/(3))=z cos(theta+(4 pi)/(3)), then write the value of (1)/(x)+(1)/(y)=(1)/(z)

A DAS GUPTA-Circular Functions, Identities -Exercise
  1. tan 22 1^circ/2 is a root of the equation - (1+x^(2))/(1- x^(2)) = sq...

    Text Solution

    |

  2. If tan theta= 2 is satisfied by alpha, beta then the value of frac{tan...

    Text Solution

    |

  3. Prove that sin 1^circ lt sin 1.

    Text Solution

    |

  4. If sin alpha = -3/5,pi lt alpha lt 3pi/2 then cos alpha/2 = 1/sqrt10

    Text Solution

    |

  5. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |

  6. If sin 17^circ *sin 43^circ *sin 77^circ = lambda sin 51^circ then lam...

    Text Solution

    |

  7. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |

  8. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |

  9. In the following incomplete sentences fill in the blanks such that the...

    Text Solution

    |

  10. If un = 2cos n theta then u1un - u(n-1) is equal to

    Text Solution

    |

  11. If frac {x}{cos theta} = frac {y}{cos(theta -(2pi)/3)} = frac {z}{co...

    Text Solution

    |

  12. If cos alpha + cos beta + cos gamma = 0 then cos 3alpha + cos 3beta + ...

    Text Solution

    |

  13. tan 40^circ + 2tan 10^circ is equal to

    Text Solution

    |

  14. A factor of cos 4theta - cos 4phi is

    Text Solution

    |

  15. The chord AB of a circle subtends an angle of frac {2pi}{3} at a point...

    Text Solution

    |

  16. If sin alpha + cos alpha = lambda then find |sin^(6) alpha - cos^(6) a...

    Text Solution

    |

  17. Let f(theta) = (cos theta+ cot theta)/(sin theta+ tan theta) and the s...

    Text Solution

    |

  18. Prove that sinfrac {pi}{14} is a root of the equation 8x^(3) -4x^(2) -...

    Text Solution

    |

  19. In a convex polygon the interior angles are in AP, the smallest angle ...

    Text Solution

    |

  20. AB and CD are two parallel chords of a circle of radius 6 cm lying on ...

    Text Solution

    |