Home
Class 12
MATHS
If the three vectors vec a+ vec b , vec...

If the three vectors ` vec a+ vec b , vec b+ vec c` and ` vec c+ vec a` are also coplanar.

Promotional Banner

Topper's Solved these Questions

  • Product of three or more Vectors

    A DAS GUPTA|Exercise Exercise|28 Videos
  • Parabola

    A DAS GUPTA|Exercise EXERCISE|51 Videos
  • Product of two Vectors

    A DAS GUPTA|Exercise Exercise|48 Videos

Similar Questions

Explore conceptually related problems

If the three vectors vec a,vec b,vec c are coplanar, prove that the vectors vec a+vec b,vec b+vec c and vec c+vec a are also coplanar.

If vec a,vcb and vec c are non-coplanar vectors, then show that vec a+vec b,vec b+vec c and vec c+vec a are also non-coplanar

Show that the vectors 2vec a-vec b+3vec c,vec a+vec b-2vec c and vec a+vec b-3vec c are non-coplanar vectors (where vec a,vec b,vec c are non-coplanar vectors)

Show that the vectors vec a-2vec b+3vec c,vec a-3vec b+5vec c and -2vec a+3vec b-4vec c are coplanar,where vec a,vec b,vec c are non-coplanar.

The vectors vec a,vec b,vec c,vec d are coplanar then

Let vec a, vec b, vec b, vec b are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c = 3 and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then

Let vec a, vec b, vec c are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Let vec a,vec b and vec c, be non-zero non-coplanar vectors. Prove that: vec a-2vec b+3vec c,-2vec a+3vec b-4vec c and vec c-3vec b+5vec c are coplanar vectors. 2vec a-vec b+3vec c,vec a+vec b-2vec c and vec a+vec b-3vec c are non-coplanar vectors.

A DAS GUPTA-Product of three or more Vectors-Exercise
  1. If three concurrent edges of a parallelopiped of volume V represent ve...

    Text Solution

    |

  2. The position vectors of the points A,B,C , D are respectively 2 vec i ...

    Text Solution

    |

  3. If the three vectors vec a+ vec b , vec b+ vec c and vec c+ vec a ar...

    Text Solution

    |

  4. Prove that ( vec a- vec b)dot{( vec b- vec c)xx( vec c- vec a)}=0

    Text Solution

    |

  5. Let vec a = a1 hat i + a2 hat j+ a3 hat k;vec b = b1 hat i+ b2 hat j+...

    Text Solution

    |

  6. lf vec a,vec b,vec c , vec a', vec b',vec c', are two sets of non-...

    Text Solution

    |

  7. Let vec(a),vec(b)andvec(c) be three non-coplanar vectors and let vec(p...

    Text Solution

    |

  8. If vec a,vec b,vec c are three vectors such that vec a+vec b+vec c=vec...

    Text Solution

    |

  9. Prove that hat ixx( vec axx hat i) hat jxx( vec axx hat j)+ hat kxx( ...

    Text Solution

    |

  10. If vecaxx(vecbxxvecc)+(veca*vecb)vecb=(4-2beta-sinalpha)vecb+(beta^2-...

    Text Solution

    |

  11. Let vec abe a unit vector and vec ba non-zero vector not parallel to v...

    Text Solution

    |

  12. For any vector vec a , prove that | vec axx hat i|^2+| vec axx hat j|...

    Text Solution

    |

  13. If vectors b ,ca n dd are not coplanar, then prove that vector ( ve...

    Text Solution

    |

  14. If vec a, vecb and vec c are three conterminuous edges of a parallelo...

    Text Solution

    |

  15. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  16. If vec a=vec i + vec j + vec k, vec b=vec i - vec j + vec k and vec c=...

    Text Solution

    |

  17. If the volume of a parallelopiped, whose three coterminous edges are -...

    Text Solution

    |

  18. Find the volume of the parallelepiped whose coterminous edges are r...

    Text Solution

    |

  19. The points (3,6,9), (1,2,3), (2,3,4) and (4,6,lambda) are coplanar if ...

    Text Solution

    |

  20. If vec xdot vec a=0, vec xdot vec b=0a n d vec xdot vec c=0 for some ...

    Text Solution

    |