Home
Class 12
MATHS
The points (3,6,9), (1,2,3), (2,3,4) and...

The points `(3,6,9), (1,2,3), (2,3,4)` and `(4,6,lambda)` are coplanar if `lambda`=_______.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the points \( (3,6,9), (1,2,3), (2,3,4) \), and \( (4,6,\lambda) \) are coplanar, we can use the condition that the scalar triple product of the vectors formed by these points must be zero. ### Step-by-step Solution: 1. **Define the Points:** Let: - Point A = \( (3, 6, 9) \) - Point B = \( (1, 2, 3) \) - Point C = \( (2, 3, 4) \) - Point D = \( (4, 6, \lambda) \) 2. **Calculate the Vectors:** We need to calculate the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \): - \( \vec{AB} = B - A = (1 - 3, 2 - 6, 3 - 9) = (-2, -4, -6) \) - \( \vec{AC} = C - A = (2 - 3, 3 - 6, 4 - 9) = (-1, -3, -5) \) - \( \vec{AD} = D - A = (4 - 3, 6 - 6, \lambda - 9) = (1, 0, \lambda - 9) \) 3. **Set Up the Scalar Triple Product:** The scalar triple product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \) must equal zero for the points to be coplanar. We can express this as a determinant: \[ \begin{vmatrix} -2 & -4 & -6 \\ -1 & -3 & -5 \\ 1 & 0 & \lambda - 9 \end{vmatrix} = 0 \] 4. **Calculate the Determinant:** We will calculate the determinant using the method of cofactor expansion: \[ = -2 \begin{vmatrix} -3 & -5 \\ 0 & \lambda - 9 \end{vmatrix} - (-4) \begin{vmatrix} -1 & -5 \\ 1 & \lambda - 9 \end{vmatrix} - 6 \begin{vmatrix} -1 & -3 \\ 1 & 0 \end{vmatrix} \] Now, calculating each of the 2x2 determinants: - For the first determinant: \[ = -2((-3)(\lambda - 9) - (0)(-5)) = -2(-3\lambda + 27) = 6\lambda - 54 \] - For the second determinant: \[ = -4((-1)(\lambda - 9) - (-5)(1)) = -4(-\lambda + 9 + 5) = -4(-\lambda + 14) = 4\lambda - 56 \] - For the third determinant: \[ = -6((-1)(0) - (-3)(1)) = -6(3) = -18 \] 5. **Combine the Results:** Now combine these results: \[ 6\lambda - 54 + 4\lambda - 56 - 18 = 0 \] Simplifying this gives: \[ 10\lambda - 128 = 0 \] 6. **Solve for \( \lambda \):** \[ 10\lambda = 128 \implies \lambda = \frac{128}{10} = 12.8 \] ### Final Answer: Thus, the value of \( \lambda \) for which the points are coplanar is \( \lambda = 12.8 \). ---
Promotional Banner

Topper's Solved these Questions

  • Product of three or more Vectors

    A DAS GUPTA|Exercise Exercise|28 Videos
  • Parabola

    A DAS GUPTA|Exercise EXERCISE|51 Videos
  • Product of two Vectors

    A DAS GUPTA|Exercise Exercise|48 Videos

Similar Questions

Explore conceptually related problems

If points (0,0,9),(1,1,8),(1,2,7)a n d(2,2,lambda) are coplanar, then lambda=

If the points A(4, 5, 1), B(5, 3, 4), C(4, 1, 6), D(3, lambda, 3) are coplanar, then lambda=

If the points (6, -1, 2), (8, -7, lambda) and (5, 2, 4) are collinear then lambda=

If the points A(-6, 3, 2), B(3, -2, 4), C(5, 7, 3), D(-13, lambda, -1) are coplanar, then lambda=

If the points A(2,3,-4), B(1,-2,3) and C (3,lambda,-1) are colliner, then value of lambda is

If the points A(-1,3,2),B(-4,2,-2) and C(5,5,lambda) are collinear,find the value of lambda

If the points A(3, 9, 4), B(0, -1, -1), C(lambda, 4, 4), D(4, 5, 1) are coplanar, then lambda=

Find lambda for which the points A(3,2,1),B(4,lambda,5),C(4,2,-2) and D(6,5,-1) are coplanar.

If the points A(2, 1, -1), B(0, -1, 0), C(lambda, 0, 4), D(2, 0, 1) are coplanar, then lambda=

A DAS GUPTA-Product of three or more Vectors-Exercise
  1. Prove that hat ixx( vec axx hat i) hat jxx( vec axx hat j)+ hat kxx( ...

    Text Solution

    |

  2. If vecaxx(vecbxxvecc)+(veca*vecb)vecb=(4-2beta-sinalpha)vecb+(beta^2-...

    Text Solution

    |

  3. Let vec abe a unit vector and vec ba non-zero vector not parallel to v...

    Text Solution

    |

  4. For any vector vec a , prove that | vec axx hat i|^2+| vec axx hat j|...

    Text Solution

    |

  5. If vectors b ,ca n dd are not coplanar, then prove that vector ( ve...

    Text Solution

    |

  6. If vec a, vecb and vec c are three conterminuous edges of a parallelo...

    Text Solution

    |

  7. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  8. If vec a=vec i + vec j + vec k, vec b=vec i - vec j + vec k and vec c=...

    Text Solution

    |

  9. If the volume of a parallelopiped, whose three coterminous edges are -...

    Text Solution

    |

  10. Find the volume of the parallelepiped whose coterminous edges are r...

    Text Solution

    |

  11. The points (3,6,9), (1,2,3), (2,3,4) and (4,6,lambda) are coplanar if ...

    Text Solution

    |

  12. If vec xdot vec a=0, vec xdot vec b=0a n d vec xdot vec c=0 for some ...

    Text Solution

    |

  13. Let veca,vecb and vecc be three vectors having magnitudes 1, 1 and 2 r...

    Text Solution

    |

  14. The scalar vec Adot( vec B+ vec C)xx( vec A+ vec B+ vec C) equals 0 b...

    Text Solution

    |

  15. Let a,b,c be distinct non zero numbers. If the vectors a vec i + a ve...

    Text Solution

    |

  16. The vectors vecaxx(vecbxxvecc), vecbxx(veccxxveca) and veccxx(vecaxxve...

    Text Solution

    |

  17. vec p , vec q ,a n d vec r are three mutually perpendicular vectors of...

    Text Solution

    |

  18. In each of the following, one or more options ar correct. Choose the ...

    Text Solution

    |

  19. If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then ...

    Text Solution

    |

  20. Given | vec a|=| vec b|=1a n d| vec a+ vec b|=3. If vec c is a vector...

    Text Solution

    |