Home
Class 12
MATHS
Let a,b,c be distinct non zero numbers. ...

Let a,b,c be distinct non zero numbers. If the vectors `a vec i + a vecj +c vec k`, `vec i + vec k` and `c vec i + c vec j + b vec k` lie in a plane then 'c' is

A

the AM of a and b

B

the GM of a and b

C

the HM of a and b

D

equal to zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( c \) given that the vectors \( \vec{A} = a \vec{i} + a \vec{j} + c \vec{k} \), \( \vec{B} = \vec{i} + \vec{k} \), and \( \vec{C} = c \vec{i} + c \vec{j} + b \vec{k} \) are coplanar. The condition for coplanarity of three vectors is that their scalar triple product is zero. ### Step-by-Step Solution: 1. **Write the Vectors**: \[ \vec{A} = a \vec{i} + a \vec{j} + c \vec{k} \] \[ \vec{B} = \vec{i} + \vec{k} \] \[ \vec{C} = c \vec{i} + c \vec{j} + b \vec{k} \] 2. **Set Up the Scalar Triple Product**: The scalar triple product can be expressed as the determinant of a matrix formed by the coefficients of \( \vec{i} \), \( \vec{j} \), and \( \vec{k} \): \[ \begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: We will calculate the determinant step by step: \[ = a \begin{vmatrix} 0 & 1 \\ c & b \end{vmatrix} - a \begin{vmatrix} 1 & 1 \\ c & b \end{vmatrix} + c \begin{vmatrix} 1 & 0 \\ c & c \end{vmatrix} \] - Calculate the first determinant: \[ = a(0 \cdot b - 1 \cdot c) = -ac \] - Calculate the second determinant: \[ = -a(1 \cdot b - 1 \cdot c) = -a(b - c) = -ab + ac \] - Calculate the third determinant: \[ = c(1 \cdot c - 0 \cdot c) = c^2 \] 4. **Combine the Results**: Putting it all together: \[ -ac - ab + ac + c^2 = 0 \] Simplifying this gives: \[ -ab + c^2 = 0 \] Thus, we have: \[ c^2 = ab \] 5. **Solve for \( c \)**: Taking the square root of both sides, we find: \[ c = \sqrt{ab} \] Since \( a \) and \( b \) are distinct non-zero numbers, we conclude that: \[ c = \text{Geometric Mean of } a \text{ and } b \] ### Conclusion: Thus, the value of \( c \) is the geometric mean of \( a \) and \( b \).
Promotional Banner

Topper's Solved these Questions

  • Product of three or more Vectors

    A DAS GUPTA|Exercise Exercise|28 Videos
  • Parabola

    A DAS GUPTA|Exercise EXERCISE|51 Videos
  • Product of two Vectors

    A DAS GUPTA|Exercise Exercise|48 Videos

Similar Questions

Explore conceptually related problems

if the vectors vec a=vec i+vec j+vec k, , b=vec i-vec j+2vec k and vec c=xvec i+(x-2)vec j-vec k are coplanar then x is

Find the unit vector in the direction of the vector vec a + vec b if vec a =vec i +2 vec j + 3 vec k and vec b = 2 vec i + 3 vec j + 5 vec k .

If vec a is a non-zero vector and vec a * vec b = vec a * vec c, vec a xxvec b = vec a xxvec c, then

[veci vec i vec i] = (A) 0 (B) 1 (C) vec i (D) vec k

vec k.vec k= (A) 0 (B) 1 (C) vec i (D) vec j

vec a = i + j + k, vec b = i-j + k, vec c = 2i + 3j-k then (vec aXvec b) Xvec c =

Let vec a = hat i + hat j + hat k, vec b = hat i + 4 hat j - hat k, vec c = hat i + hat j + 2 hat k and hat s be a the unit vector the magnitude of the vector (vec a .vec s)(vec b xx vec c) + (vec b. vec s)(vec c xx vec a) + ( vec c.vec s)(vec a xx vec b) is equal to (A) 1 (B) 2 (C) 3 (D) 4

vec(i)timesvec(j)= (a) vec0 (b) 1 (c) -vec k (d) vec k

Let vec a, vec b, vec c be three non-zero vectors such that [vec with bvec c] = | vec a || vec b || vec c | then

Find a unit vector vec c if vec -i+vec j-vec k bisects the angle between vec c and 3vec i+4vec j

A DAS GUPTA-Product of three or more Vectors-Exercise
  1. Prove that hat ixx( vec axx hat i) hat jxx( vec axx hat j)+ hat kxx( ...

    Text Solution

    |

  2. If vecaxx(vecbxxvecc)+(veca*vecb)vecb=(4-2beta-sinalpha)vecb+(beta^2-...

    Text Solution

    |

  3. Let vec abe a unit vector and vec ba non-zero vector not parallel to v...

    Text Solution

    |

  4. For any vector vec a , prove that | vec axx hat i|^2+| vec axx hat j|...

    Text Solution

    |

  5. If vectors b ,ca n dd are not coplanar, then prove that vector ( ve...

    Text Solution

    |

  6. If vec a, vecb and vec c are three conterminuous edges of a parallelo...

    Text Solution

    |

  7. Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equal...

    Text Solution

    |

  8. If vec a=vec i + vec j + vec k, vec b=vec i - vec j + vec k and vec c=...

    Text Solution

    |

  9. If the volume of a parallelopiped, whose three coterminous edges are -...

    Text Solution

    |

  10. Find the volume of the parallelepiped whose coterminous edges are r...

    Text Solution

    |

  11. The points (3,6,9), (1,2,3), (2,3,4) and (4,6,lambda) are coplanar if ...

    Text Solution

    |

  12. If vec xdot vec a=0, vec xdot vec b=0a n d vec xdot vec c=0 for some ...

    Text Solution

    |

  13. Let veca,vecb and vecc be three vectors having magnitudes 1, 1 and 2 r...

    Text Solution

    |

  14. The scalar vec Adot( vec B+ vec C)xx( vec A+ vec B+ vec C) equals 0 b...

    Text Solution

    |

  15. Let a,b,c be distinct non zero numbers. If the vectors a vec i + a ve...

    Text Solution

    |

  16. The vectors vecaxx(vecbxxvecc), vecbxx(veccxxveca) and veccxx(vecaxxve...

    Text Solution

    |

  17. vec p , vec q ,a n d vec r are three mutually perpendicular vectors of...

    Text Solution

    |

  18. In each of the following, one or more options ar correct. Choose the ...

    Text Solution

    |

  19. If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then ...

    Text Solution

    |

  20. Given | vec a|=| vec b|=1a n d| vec a+ vec b|=3. If vec c is a vector...

    Text Solution

    |