`f(x) = {{:(cos^(-1){cot x} , x lt pi/2),(pi[x]-1, x ge pi/2):}` है, तो असंतत्ता का उछाल (jump) ज्ञात कीजिए, जहाँ `[` `]` महत्तम पूर्णांक तथा `{}`भिन्नात्मक भाग फलन को दर्शाता है।
लिखित उत्तर
Verified by Experts
The correct Answer is:
`pi-1-pi/2 = pi/2-1`
`f(x) = {{:(cos^(-1){cot x} , x lt pi/2),(pi[x]-1, x ge pi/2):}`
`LHL`
`=lim_(x-> (pi /2)^-) f(x)`
`=lim_(x-> (pi /2)^-)cos^( -1){cotx} `
`=lim_(h->0) cos^ (-1) { cot( pi/ 2 -h)} `
`=lim_(h->0) cos^ (-1 ){ tanh}`
`=cos^(-1){0}`
` = pi/ 2`
`RHL`
`=lim_(x-> (pi /2)^+) f(x)`
`=lim_(x-> (pi /2)^+) pi[x]-1`
`=lim_(h->0) pi[ pi /2 +h]-1`
`=pi[pi/2]-1`
`=pi xx 1-1`
`= pi-1`
असांतत्यता का उछाल (jump)
`=RHL - LHL`
`=pi-1-pi/2`
` = pi/2-1`
टॉपर्स ने हल किए ये सवाल
CONTINUITY
ALLEN HINDI|Exercise DO YOURSELF-1|2 Videos
CONTINUITY
ALLEN HINDI|Exercise DO YOURSELF-2|2 Videos
COMPLEX NUMBER
ALLEN HINDI|Exercise EXERCISE 5 (B) JEE (ADVANCED) : PREVIOUS YEAR QUESTIONS|36 Videos
DEFINITE INTEGRATION
ALLEN HINDI|Exercise Exercise - 05 B|38 Videos
ALLEN HINDI-CONTINUITY -EXERCISE -05 [B] (JEE-ADVANCED: PREVIOUS YEAR QUESTIONS)