Home
Class 12
PHYSICS
A current I flows in a rectangularly sha...

A current I flows in a rectangularly shaped wire whose centre lies at `(x_0,0,0)` and whose vertices are located at the points A `(x_0+d,-a,-b),B(x_0-d,a,-b),C(x_0-d,a,+b) and D(x_0+d,-a,b)` respectively. Assume that a,b,d << `x_0`. Find the magnitude of magnetic dipole moment vector of the rectangular wire frame in `J//T`. (Given, b=10 m,I=0.01A, d=4m,a=3m).

A

`2 J T^(-1)`

B

`4 J T^(-1)`

C

`3 J T^(-1)`

D

`9 J T^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the magnetic dipole moment vector of the rectangular wire frame, we can follow these steps: ### Step 1: Identify the Coordinates of the Vertices The vertices of the rectangular wire frame are given as: - A: \((x_0 + d, -a, -b)\) - B: \((x_0 - d, a, -b)\) - C: \((x_0 - d, a, b)\) - D: \((x_0 + d, -a, b)\) ### Step 2: Calculate the Position Vectors The position vectors of points A, B, C, and D can be expressed as: - \(\vec{A} = (x_0 + d) \hat{i} - a \hat{j} - b \hat{k}\) - \(\vec{B} = (x_0 - d) \hat{i} + a \hat{j} - b \hat{k}\) - \(\vec{C} = (x_0 - d) \hat{i} + a \hat{j} + b \hat{k}\) - \(\vec{D} = (x_0 + d) \hat{i} - a \hat{j} + b \hat{k}\) ### Step 3: Calculate the Area Vector The area vector \(\vec{A}\) can be calculated using the cross product of two adjacent sides of the rectangle. We can take the vectors \(\vec{AB}\) and \(\vec{AD}\): - \(\vec{AB} = \vec{B} - \vec{A}\) - \(\vec{AD} = \vec{D} - \vec{A}\) Calculating \(\vec{AB}\): \[ \vec{AB} = [(x_0 - d) - (x_0 + d)] \hat{i} + [a - (-a)] \hat{j} + [-b - (-b)] \hat{k} = -2d \hat{i} + 2a \hat{j} + 0 \hat{k} \] Calculating \(\vec{AD}\): \[ \vec{AD} = [(x_0 + d) - (x_0 + d)] \hat{i} + [-a - (-a)] \hat{j} + [b - (-b)] \hat{k} = 0 \hat{i} + 0 \hat{j} + 2b \hat{k} \] ### Step 4: Compute the Area Vector Now, we calculate the area vector \(\vec{A}\): \[ \vec{A} = \vec{AB} \times \vec{AD} \] Calculating the cross product: \[ \vec{A} = (-2d \hat{i} + 2a \hat{j}) \times (2b \hat{k}) \] Using the determinant method for cross product: \[ \vec{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2d & 2a & 0 \\ 0 & 0 & 2b \end{vmatrix} \] Calculating this determinant gives: \[ \vec{A} = (2a)(2b) \hat{i} - (0)(-2d) \hat{j} + (0)(2a) \hat{k} = 4ab \hat{i} \] ### Step 5: Calculate the Magnitude of the Area Vector The magnitude of the area vector is: \[ |\vec{A}| = 4ab \] ### Step 6: Calculate the Magnetic Dipole Moment The magnetic dipole moment \(\vec{M}\) is given by: \[ \vec{M} = I \cdot \vec{A} \] Where \(I\) is the current flowing through the wire. Therefore, the magnitude of the magnetic dipole moment is: \[ |\vec{M}| = I \cdot |\vec{A}| \] Substituting the values: \[ |\vec{M}| = 0.01 \, \text{A} \cdot 4ab \] ### Step 7: Substitute Given Values Given \(a = 3 \, \text{m}\), \(b = 10 \, \text{m}\): \[ |\vec{M}| = 0.01 \cdot 4 \cdot 3 \cdot 10 = 0.01 \cdot 120 = 1.2 \, \text{J/T} \] ### Final Result The magnitude of the magnetic dipole moment vector of the rectangular wire frame is: \[ \boxed{1.2 \, \text{J/T}} \]

To find the magnitude of the magnetic dipole moment vector of the rectangular wire frame, we can follow these steps: ### Step 1: Identify the Coordinates of the Vertices The vertices of the rectangular wire frame are given as: - A: \((x_0 + d, -a, -b)\) - B: \((x_0 - d, a, -b)\) - C: \((x_0 - d, a, b)\) - D: \((x_0 + d, -a, b)\) ...
Promotional Banner

Topper's Solved these Questions

  • MOVING CHARGES AND MAGNETISM

    NCERT FINGERTIPS ENGLISH|Exercise EXEMPLAR PROBLEMS|6 Videos
  • MOVING CHARGES AND MAGNETISM

    NCERT FINGERTIPS ENGLISH|Exercise ASSERTION & REASON|15 Videos
  • MOVING CHARGES AND MAGNETISM

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos
  • MAGNETISM AND MATTER

    NCERT FINGERTIPS ENGLISH|Exercise NCERT Exemplar|5 Videos
  • NUCLEI

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

If the points (a, 0), (b,0), (0, c) , and (0, d) are concyclic (a, b, c, d > 0) , then prove that ab = cd .

If the point (x ,4) lies on a circle whose centre is at the origin and radius is 5, then x= +-5 (b) +-3 (c) 0 (d) 14

If c ,d are the roots of the equation (x-a)(x-b)-k=0 , prove that a, b are roots of the equation (x-c)(x-d)+k=0.

If a!=0 and log_x (a^2+1)lt0 then x lies in the interval (A) (0,oo) (B) (0,1) (C) (0,a) (D) none of these

Let a and b are the roots of the equation x^2-10 xc -11d =0 and those of x^2-10 a x-11 b=0 ,dot are c and d then find the value of a+b+c+d

If a, b, c, d in R such that a lt b lt c lt d, then roots of the equation (x-a)(x-c)+2(x-b)(x-d) = 0

The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) (0,1/e) (d) none of these

If 1 is the twice repeated root of the equation a x^3+b x^2+b x+d=0,t h e n (a) a=b=d (b) a+b=0 (c) b+d=0 (d) a=d

Evaluate the following limit: (lim)_(x->0)(a x+b)/(c x+d),\ d!=0

A circle with center (a , b) passes through the origin. The equation of the tangent to the circle at the origin is (a) a x-b y=0 (b) a x+b y=0 b x-a y=0 (d) b x+a y=0