Home
Class 11
PHYSICS
सिद्ध कीजिए कि |vecA xx vecB|^(2) + |vec...

सिद्ध कीजिए कि `|vecA xx vecB|^(2) + |vecA * vecB|^(2) = (AB)^(2).`

A

zero

B

`A^(2)B^(2)`

C

AB

D

`sqrt(AB)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \( |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = (AB)^2 \), we will follow these steps: ### Step 1: Write the expressions for \(|\vec{A} \times \vec{B}|\) and \(|\vec{A} \cdot \vec{B}|\) We know that: - The magnitude of the cross product is given by: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] - The magnitude of the dot product is given by: \[ |\vec{A} \cdot \vec{B}| = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 2: Square both expressions Now, we will square both expressions: 1. For the cross product: \[ |\vec{A} \times \vec{B}|^2 = (|\vec{A}| |\vec{B}| \sin \theta)^2 = |\vec{A}|^2 |\vec{B}|^2 \sin^2 \theta \] 2. For the dot product: \[ |\vec{A} \cdot \vec{B}|^2 = (|\vec{A}| |\vec{B}| \cos \theta)^2 = |\vec{A}|^2 |\vec{B}|^2 \cos^2 \theta \] ### Step 3: Add the squared expressions Now, we will add these two squared expressions: \[ |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = |\vec{A}|^2 |\vec{B}|^2 \sin^2 \theta + |\vec{A}|^2 |\vec{B}|^2 \cos^2 \theta \] ### Step 4: Factor out the common term We can factor out \( |\vec{A}|^2 |\vec{B}|^2 \) from the left-hand side: \[ |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = |\vec{A}|^2 |\vec{B}|^2 (\sin^2 \theta + \cos^2 \theta) \] ### Step 5: Use the Pythagorean identity Using the Pythagorean identity, we know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Thus, we can simplify: \[ |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = |\vec{A}|^2 |\vec{B}|^2 \cdot 1 = |\vec{A}|^2 |\vec{B}|^2 \] ### Step 6: Write the final result Finally, we can express this as: \[ |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = (|\vec{A}| |\vec{B}|)^2 \] This proves that: \[ |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = (AB)^2 \]

To prove the equation \( |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = (AB)^2 \), we will follow these steps: ### Step 1: Write the expressions for \(|\vec{A} \times \vec{B}|\) and \(|\vec{A} \cdot \vec{B}|\) We know that: - The magnitude of the cross product is given by: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta ...
Promotional Banner

Topper's Solved these Questions

  • MOTION IN A PLANE

    NCERT FINGERTIPS ENGLISH|Exercise HOTS|6 Videos
  • MOTION IN A PLANE

    NCERT FINGERTIPS ENGLISH|Exercise EXEMPLER PROBLEMS|9 Videos
  • MECHANICAL PROPERTIES OF SOLIDS

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos
  • MOTION IN A STRAIGHT LINE

    NCERT FINGERTIPS ENGLISH|Exercise NCERT Exemplar|6 Videos

Similar Questions

Explore conceptually related problems

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

(vecA+2vecB).(2vecA-3vecB) :-

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is (a) 0 (b) 1 (c) 4/3 (d) none of these

vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca then

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

NCERT FINGERTIPS ENGLISH-MOTION IN A PLANE -Assertion And Reason
  1. सिद्ध कीजिए कि |vecA xx vecB|^(2) + |vecA * vecB|^(2) = (AB)^(2).

    Text Solution

    |

  2. Assertion: Two vectors are said to be equal if , and only if, they hav...

    Text Solution

    |

  3. Assertion: Vector addition is commutative. Reason: Two vectors may b...

    Text Solution

    |

  4. Assertion: The difference of two vectors A and B can be treated as the...

    Text Solution

    |

  5. Assertion: For motion in two or three diemensions, velocity and accel...

    Text Solution

    |

  6. Asserion: Magnitude of the resultant of two vectors may be less than t...

    Text Solution

    |

  7. Assertion : An object has given two velocities vecv(1) and vecv(2) has...

    Text Solution

    |

  8. Assertion : A vector vecA can be resolved into component along with gi...

    Text Solution

    |

  9. Assertion: If hat(i) and hat(j) are unit Vectors along x-axis and y-ax...

    Text Solution

    |

  10. Assertion: Rain is falling vertically with a certain speed. A boy hold...

    Text Solution

    |

  11. Assertion : The instantaneous velocity is given by the limiting value ...

    Text Solution

    |

  12. Assertion: The trajectory of an object moving under the same acclerati...

    Text Solution

    |

  13. Assertion: A projectile that traverses a parabolic path show deviation...

    Text Solution

    |

  14. Assertion : A projectile should have two component velocities in two m...

    Text Solution

    |

  15. Assertion: Centripetal acceleration is always direction towards the ce...

    Text Solution

    |

  16. Assertion: A uniform circular motion is an acceleration motion. Reas...

    Text Solution

    |