Home
Class 12
CHEMISTRY
An element cyrstallises in a structure h...

An element cyrstallises in a structure having a fcc unit cell of and edge 200 pm. Calculate its density if 200 g of this element contains `24xx 10^(23)` atoms.

A

`"41.66 g cm"^(-3)`

B

`"313.9 g cm"^(-3)`

C

`"8.117 g cm"^(-3)`

D

`"400 g cm"^(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of calculating the density of an element that crystallizes in a face-centered cubic (FCC) structure, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Data:** - Edge length of the FCC unit cell, \( a = 200 \, \text{pm} = 200 \times 10^{-12} \, \text{m} \) - Mass of the element, \( m = 200 \, \text{g} \) - Number of atoms in 200 g, \( N = 24 \times 10^{23} \, \text{atoms} \) 2. **Calculate the Molar Mass (M):** - The molar mass \( M \) can be calculated using the formula: \[ M = \frac{m}{N} \times N_A \] - Where \( N_A \) is Avogadro's number, \( N_A = 6.022 \times 10^{23} \, \text{mol}^{-1} \). - Substituting the values: \[ M = \frac{200 \, \text{g}}{24 \times 10^{23}} \times 6.022 \times 10^{23} = \frac{200 \times 6.022}{24} \approx 50.90 \, \text{g/mol} \] 3. **Determine the Number of Atoms per Unit Cell (Z):** - For an FCC unit cell, the number of atoms per unit cell \( Z = 4 \). 4. **Calculate the Volume of the Unit Cell (V):** - The volume \( V \) of the unit cell is given by: \[ V = a^3 \] - Substituting the edge length: \[ V = (200 \times 10^{-12})^3 = 8 \times 10^{-31} \, \text{m}^3 \] 5. **Calculate the Density (d):** - The density \( d \) can be calculated using the formula: \[ d = \frac{Z \times M}{N_A \times V} \] - Substituting the known values: \[ d = \frac{4 \times 50.90}{6.022 \times 10^{23} \times 8 \times 10^{-31}} \] - Performing the calculation: \[ d = \frac{203.6}{4.8176 \times 10^{-7}} \approx 42.35 \, \text{g/cm}^3 \] 6. **Final Result:** - The density of the element is approximately \( 41.66 \, \text{g/cm}^3 \).

To solve the problem of calculating the density of an element that crystallizes in a face-centered cubic (FCC) structure, we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Given Data:** - Edge length of the FCC unit cell, \( a = 200 \, \text{pm} = 200 \times 10^{-12} \, \text{m} \) - Mass of the element, \( m = 200 \, \text{g} \) - Number of atoms in 200 g, \( N = 24 \times 10^{23} \, \text{atoms} \) ...
Promotional Banner

Topper's Solved these Questions

  • THE SOLID STATE

    NCERT FINGERTIPS ENGLISH|Exercise HOTS|7 Videos
  • THE SOLID STATE

    NCERT FINGERTIPS ENGLISH|Exercise EXEMPLAR PROBLEMS|37 Videos
  • THE P-BLOCK ELEMENTS

    NCERT FINGERTIPS ENGLISH|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

An element crystallises in a structure having a fcc unit cell of an edge 200 pm. Calculate its density if 400 g of this element contain 48xx10^(23) atoms.

An element crystallizes in a structure having fee unit cell of an edge 200 pm. Calculate the density if 200 g of this element contains 24 xx 10^(23) atoms.

Density of a unit cell is respresented as rho = (" Effective no. of atoms (s)" xx "Mass of a unit cell ")/("Volume of a unit cell ")=(Z.M)/(N_(A).a^(3)) where , Z =mass of effective no . of atoms(s) or ion (s). M= At . mass// formula N_(A) = Avogadro' s no . rArr 6.0323 xx 10^(23) a= edge length of unit cell An element crystallizes in a structure having fcc unit cell of an edge 200 pm . Calculate the density , if 100 g of this element contains 12xx10^(23) atoms :

An element crystallises in fcc lattice with cell edge of 400 pm. Calculate its density if 250 g of this element contain 2.5 xx 10^(24) atoms.

An element crystallizes in a f.c.c. lattice with cell edge of 250 pm. Calculate the density if 300 g of this element contain 2 xx 10^(24) atoms.

An element crystallises in a f.c.c. lattice with edge length of 400 pm. Calculate the density if 200 g of this element contain 2.5xx10^(24) atoms.

An element exists in bcc lattice with a cell edge of 288 pm. Calculate its molar density is 7.2g//cm^(3)

An element (At. Mass =50 g/mol) having fcc structure has unit cell edge length 400 pm. The density of element is

An element occurs in bcc structure with cell edge 288 pm. Its density is 7.2 g cm^(-3) . Calculate the atomic mass of the element.