Home
Class 12
MATHS
e^(x) + e^(y) = e^(x+ y) then prove that...

`e^(x) + e^(y) = e^(x+ y)` then prove that, `(dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) + 3y = e^(-2x)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

If x^(y)= e^(x-y) , then find (dy)/(dx)

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

y = e^(2x)(a + bx)

If y= 3e^(2x) + 2e^(3x) , prove that (d^(2)y)/(dx^(2))-5 (dy)/(dx) + 6y= 0