Home
Class 12
MATHS
Find (dy)/(dx): x=t + (1)/(t) and y= t...

Find `(dy)/(dx)`:
`x=t + (1)/(t) and y= t - (1)/(t)`

Text Solution

Verified by Experts

The correct Answer is:
`(t^(2)+1)/(t^(2)-1)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

For a positive constant a find (dy)/(dx) , where y= a^(t + (1)/(t)), and x= (t + (1)/(t))^(a)

Find (dy)/(dx) : x=a sin 2t (1+ cos 2t) and y= b cos 2t (1-cos 2t) show that, ((dy)/(dx))_(t = (pi)/(4))= (b)/(a)

Find (dy)/(dx) : x= te^(t),y=1 + log t

Find (dy)/(dx) , if x= a t^(2), y= 2 a t

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

Find (dy)/(dx) , if y= 12(1- cos t), x= 10 (t- sin t), -(pi)/(2) lt t lt (pi)/(2)