Home
Class 12
MATHS
Find (dy)/(dx): x=a sin^(2) theta cos ...

Find `(dy)/(dx)`:
`x=a sin^(2) theta cos theta, y= 2b cos^(2) theta (-sin theta)`

Text Solution

Verified by Experts

The correct Answer is:
`-(b^((2)/(3)) y^((1)/(3)))/(a^((2)/(3))x^((1)/(3)))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) : x=2 cos theta- cos^(2) theta and y=2 sin theta- sin 2theta Show that (dy)/(dx)= -1 " when " theta = (pi)/(2)

Find (dy)/(dx) , if x= a (theta + sin theta), y= a (1- cos theta)

Find (dy)/(dx) : x= cos^(2) theta and y= sin^(2) theta

Find (dy)/(dx) , if x = a cos theta, y= a sin theta

If x and y are connected parametrically by the equations without eliminating the parameter, find (dy)/(dx) x = cos theta - cos 2 theta, y= sin theta- sin 2 theta

If x and y are connected parametrically by the equations without eliminating the parameter, find (dy)/(dx) x=a (cos theta + theta sin theta),y= a (sin theta- theta cos theta)