Home
Class 12
MATHS
Find (dy)/(dx): x= e^(cos 2t) and y= e...

Find `(dy)/(dx)`:
`x= e^(cos 2t) and y= e^(sin 2t)` show that, `(dy)/(dx)= (-y log x)/(x log y)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) : x= te^(t),y=1 + log t

Find (dy)/(dx) : x=a sin 2t (1+ cos 2t) and y= b cos 2t (1-cos 2t) show that, ((dy)/(dx))_(t = (pi)/(4))= (b)/(a)

(dy)/(dx) + 3y = e^(-2x)

Find (dy)/(dx) if y+ sin y= cos x

Find (dy)/(dx) , if x = a cos theta, y= a sin theta

Find (dy)/(dx) , if x= a t^(2), y= 2 a t

If y=e^(x)sin x , then find (dy)/(dx)

x log x(dy)/(dx) + y = (2)/(x)log x

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)