Home
Class 12
MATHS
Find (dy)/(dx): x=a sin 2t (1+ cos 2t)...

Find `(dy)/(dx)`:
`x=a sin 2t (1+ cos 2t) and y= b cos 2t`
`(1-cos 2t)` show that, `((dy)/(dx))_(t = (pi)/(4))= (b)/(a)`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) : x= te^(t),y=1 + log t

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

Find (dy)/(dx) : x=a sin^(2) theta cos theta, y= 2b cos^(2) theta (-sin theta)

Find (dy)/(dx) : x=t + (1)/(t) and y= t - (1)/(t)

If x= 3 sin t- sin (3t), y= 3 cos t- cos 3t , then find ((dy)/(dx)) " at " t= (pi)/(3)

Find (dy)/(dx) , if x= a t^(2), y= 2 a t