Home
Class 12
MATHS
Show that (d)/(dx) e^(ax) cos (bx + c) =...

Show that `(d)/(dx) e^(ax) cos (bx + c) = r e^(ax) cos (bx + c + alpha)` where `r= sqrt(a^(2) + b^(2)), cosalpha= (a)/(r ), sin alpha = (b)/(r ) and (d^(2))/(dx^(2)) e^(ax) cos (ax + c) = r^(2) e^(ax ) cos (bx + c + 2 alpha)`.

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx) (e^(5x)) = …….

(d)/(dx) (e^(sin^(-1)x + cos^(-1) x))= ……. (|x| lt 1)

d/(dx) [Sec^(-1)e^(2x)]=?

If y= e^(ax) sin bx then show that, y_(2)- 2ay_(1) + (a^(2) + b^(2))y= 0

(d)/(dx ) ( e^( tan^(-1) x+ cot^(-1) x)) =……. : (x in R)

(d)/(dx)(e^(100)) =…………………

If cos^(-1)x/a+cos^(-1)y/b=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)cosalpha+(y^2)/(b^2)=sin^2alpha

Show that (b-c)/(r _(1))+ (c-a)/(r _(2))+(a-b)/(r _(3)) =0.