Home
Class 12
MATHS
Find the value of (dy)/(dx) if y= x^(tan...

Find the value of `(dy)/(dx)` if `y= x^(tan x) + sqrt((x^(2) +1)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
`x^(tan x) ((tan x)/(x) + log x. sec^(2) x) + (x)/(sqrt(2(x^(2) + 1)))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise NCERT Exemplar Problems and Solution (Objective Type Questions)|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise NCERT Exemplar Problems and Solution (Fillers)|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise NCERT Exemplar Problems and Solution (Short Answer Type Questions)|156 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

If y= x^(tan x) + sqrt((x^(2) + 1)/(x)) then find (dy)/(dx)

(dy)/(dx) + (y)/(x) = x^(2)

cos^(2)x(dy)/(dx) + y = tan x (o le x le (pi)/(2))

x dy - y dx = sqrt(x^(2) + y^(2)) dx

Find (dy)/(dx) in the following: y= sec^(-1) ((x^(2) + 1)/(x^(2)-1))

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

Find (dy)/(dx) in the following y= sin^(-1) (2x sqrt(1-x^(2))), -(1)/(sqrt2) lt x lt (1)/(sqrt2)

(dy)/(dx) = y tan x, y = 1 when x = 0