Home
Class 12
MATHS
If y= (x + sqrt(x^(2) + 1))^(m) then pro...

If `y= (x + sqrt(x^(2) + 1))^(m)` then prove that, `(x^(2)+1) y_(2) + xy_(1)= m^(2)y`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

If 2x= y^((1)/(m)) + y^(-(1)/(m)) (n ge 1) then prove that, (x^(2)-1) y_(2) + xy_(1) = m^(2)y

y=[log(x+sqrt(x^2+1))]^2 then prove that (x^2+1)y_2+x y_1=2

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

If y= sin (pt), x= sin t , then prove that (1- x^(2))y_(2)-xy_(1)+ p^(2)y= 0

If y= (tan^(-1) x)^(2) show that (x^(2) + 1)^(2) y_(2) + 2x (x^(2) + 1)y_(1) = 2

If y= {x + sqrt(x^(2) + a^(2))}^(n) prove that (dy)/(dx)= (ny)/(sqrt(x^(2) + a^(2))). n gt 1 ne N

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If y= x log ((x)/(a + bx)) prove that (d^(2)y)/(dx^(2)) = (1)/(x) ((a)/(a+ bx))^(2)

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0