Home
Class 12
MATHS
y= sin^(-1) [(5x + 12 sqrt(1-x^(2)))/(13...

`y= sin^(-1) [(5x + 12 sqrt(1-x^(2)))/(13)]` then find `(dy)/(dx)`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(sqrt(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

If y= x^(tan x) + sqrt((x^(2) + 1)/(x)) then find (dy)/(dx)

Find (dy)/(dx) in the following y= sin^(-1) (2x sqrt(1-x^(2))), -(1)/(sqrt2) lt x lt (1)/(sqrt2)

If y=e^(x)sin x , then find (dy)/(dx)

If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-

If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-

If y= log (x + sqrt(x^(2) + a^(2))) then (dy)/(dx) = ………

If y= sin^(-1)x , show that (1 -x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)=0

Find (dy)/(dx) in the following: y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt2) lt x lt 1

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0