Home
Class 12
MATHS
If y= {x + sqrt(x^(2) + a^(2))}^(n) prov...

If `y= {x + sqrt(x^(2) + a^(2))}^(n)` prove that `(dy)/(dx)= (ny)/(sqrt(x^(2) + a^(2))). n gt 1 ne N`

Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.1|84 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    KUMAR PRAKASHAN|Exercise Exercise-5.2|20 Videos
  • BOARD'S QUESTION PAPER MARCH - 2020

    KUMAR PRAKASHAN|Exercise PART - B (Section - C)|4 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos

Similar Questions

Explore conceptually related problems

If x^(m).y^(n)= (x + y)^(m+n) , prove that (dy)/(dx)= (y)/(x)

If y= log (x + sqrt(x^(2) + a^(2))) then (dy)/(dx) = ………

x dy - y dx = sqrt(x^(2) + y^(2)) dx

If y= x^(tan x) + sqrt((x^(2) + 1)/(x)) then find (dy)/(dx)

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

If x = sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

If x=cost andy=sint , then prove that (dy)/(dx)=(1)/(sqrt3), at t=(2pi)/(3) .

y= sqrt((1- sin 2x)/(1+ sin 2x)) then prove that (dy)/(dx) + sec^(2) ((pi)/(4)-x)= 0