Home
Class 12
MATHS
If the straight line x cos alpha + y sin...

If the straight line `x cos alpha + y sin alpha = p` touches the curve `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` then prove that `a^(2)cos^(2)alpha+b^(2)sin^(2)alpha= p^(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`p^(2)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS (OBJECTIVE TYPE TYPE QUESTIONS)|25 Videos
  • APPLICATION OF DERIVATIVES

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS (FILLERS)|5 Videos
  • APPLICATION OF DERIVATIVES

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS (SHORT ANSWER TYPE QUESTIONS)|24 Videos
  • ANNUAL EXAMINATION :SAMPLE PAPER

    KUMAR PRAKASHAN|Exercise PART-B ( SECTION-C)|10 Videos
  • APPLICATION OF INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER ( SECTION -D)|2 Videos

Similar Questions

Explore conceptually related problems

A line x cos alpha + y sin alpha = P is a tangent to the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 . Prove that a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=P^(2) .

If x/a + y/b = 2 touches the curve x^n/a^n + y^n/b^n = 2 at the point (alpha, beta), then

If cos^(-1)x/a+cos^(-1)y/b=alpha, prove that (x^2)/(a^2)-2(x y)/(a b)cosalpha+(y^2)/(b^2)=sin^2alpha

If sin (3alpha) /cos(2alpha) < 0 If alpha lies in

The equation sin^4 x + cos^4 x + sin2x + alpha = 0 is solvable for

If y= sin (pt), x= sin t , then prove that (1- x^(2))y_(2)-xy_(1)+ p^(2)y= 0

Show that the line xcos alpha+ysinalpha=p touches the parabola y^2=4ax if pcosalpha+asin^2alpha=0 and that the point of contact is (atan^2alpha,-2atanalpha) .

If y= a sin x + b cos x then, y^(2) + (y_(1))^(2) = ……. (a^(2) + b^(2) ne 0)

If y= A sin x + B cos x , then prove that (d^(2)y)/(dx^(2)) +y= 0