Home
Class 12
MATHS
int sqrt(x^(2)-8x+7)dx=.......

`int sqrt(x^(2)-8x+7)dx=....`

A

`(1)/(2)(x-4) sqrt(x^(2)-8x+7)+9log|x-4+sqrt(x^(2)-8x+7)|+c`

B

`(1)/(2)(x+4) sqrt(x^(2)-8x+7)+9log|x+4+sqrt(x^(2)-8x+7)|+c`

C

`(1)/(2)(x-4) sqrt(x^(2)-8x+7)-3sqrt(2) log x+4+sqrt(x^(2)-8x+7)|+c`

D

`(1)/(2)(x+4) sqrt(x^(2)-8x+7)+(9)/(2)log|x-4+sqrt(x^(2)-8x+7)|+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise EXERCISE 7.8|7 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise EXERCISE 7.9|22 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise EXERCISE 7.6|24 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

int sqrt(1+x^(2))dx=....

int sqrt(1+x^(2))dx=...

Integration of some particular functions : int(2x)/(sqrt(x^(2)-2x+7))dx=....+c

Method of integration by parts : int sqrt(xe)^(sqrt(x))dx=....

int sqrt(tan x)dx

Choose the correct answer intsqrt(x^(2)-8x+7) dx is equal to

int tan^(-1)(sqrt(x))dx=....

Integration using rigonometric identities : int tanx*sec^(2)x sqrt(1-tan^(2)x)dx=....

int(dx)/(sqrt(2x-x^(2)))=....

Integrate the following functions : int(x-2)sqrt(x^(2)-4x+7)dx