Home
Class 12
MATHS
(x+1) sqrt(2x^(2)+3)...

`(x+1) sqrt(2x^(2)+3)`

Text Solution

Verified by Experts

The correct Answer is:
`:. I=(1)/(6)(2x^(2)+3x)^(2)+(x)/(2) sqrt(2x^(2)+3)+(3sqrt(2))/(4)log|x+ sqrt(x^(2)+(3)/(2))|+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise EXERCISE 7.8|7 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise EXERCISE 7.9|22 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise EXERCISE 7.6|24 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

Integrate the function (4x+1)/(sqrt(2x^(2)+x-3))

Integrate the following functions : int(4x+3)/(sqrt(2x^(2)+3x+1))dx

State the degree of each the following polynomials : sqrt(2)x^(2) -5x^(3) + 7x +(1)/(4)

Differentiate w.r.t x, the following function: (i) sqrt(3x+2) + (1)/(sqrt(2x^(2) + 4)) (ii) e^(sec^(2)x)+ 3 cos^(-1)x (iii) log_(7) (log x)

int(x^(3))/(sqrt(1+x^(2)))dx=a(1+x^(2))^((3)/(2))+b* sqrt(1+x^(2))+C

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/4+1/2cos^(-1)x^(2) .

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

The domain of f(x) = sqrt( 2 {x}^2 - 3 {x} + 1) where {.} denotes the fractional part in [-1,1]