Home
Class 12
MATHS
inte^(x loga)*e^(x)dx=....+c...

`inte^(x loga)*e^(x)dx=....+c`

A

`((ae)^(x))/(1+loga)`

B

`(a*e^(x))/(1+loga)`

C

`(a^(x)*e)/(1+logx)`

D

`((ax)^(x))/(1+logx)`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-B)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-C)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise MULTIPLE CHOICE QUESTIONS(MCQS)|326 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

int 5^(x+1)*e^(2x-1)dx=....+c

int(e^(-x))/(1+e^(x))dx=....

int x^(x)(1+logx)dx=....+c

intxe^(x^(2)log2)*e^(x^(2))dx= _______ +c

int sec^(2)x*cosec^2(x)dx=.....+c

int(e^(2x)-1)/(e^(2x)+1)dx=...

int (1)/(4e^x+9e^(-x))dx=....

int(x^(3))/(x+1)dx=.....+C

int(1)/(e^(x)+1)dx=....