Home
Class 12
MATHS
If x sqrt(1 + y) + ysqrt(1 + x)= 0, for ...

If `x sqrt(1 + y) + ysqrt(1 + x)= 0`, for `-1 lt x lt 1`, prove that `(dy)/(dx) = - (-1)/((1 + x)^(2))`

Promotional Banner

Topper's Solved these Questions

  • ANNUAL EXAMINATION :SAMPLE PAPER

    KUMAR PRAKASHAN|Exercise PART-B ( SECTION-C)|10 Videos
  • ANNUAL EXAMINATION :SAMPLE PAPER

    KUMAR PRAKASHAN|Exercise PART-B ( SECTION-A)|20 Videos
  • APPLICATION OF DERIVATIVES

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 6 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

y= sqrt((1- sin 2x)/(1+ sin 2x)) then prove that (dy)/(dx) + sec^(2) ((pi)/(4)-x)= 0

xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If x = sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x)

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y= {x + sqrt(x^(2) + a^(2))}^(n) prove that (dy)/(dx)= (ny)/(sqrt(x^(2) + a^(2))). n gt 1 ne N