Home
Class 12
MATHS
Show that sin^(-1)(2xsqrt(1-x^(2))) = 2s...

Show that `sin^(-1)(2xsqrt(1-x^(2))) = 2sin^(-1)x`,

Text Solution

Verified by Experts

The correct Answer is:
`=2 sin^(-1)x` R.H.S
Promotional Banner

Topper's Solved these Questions

  • II PUC MATHEMATICS (ANNUAL EXAM QUESTION PAPER MARCH - 2015)

    SUNSTAR PUBLICATION|Exercise PART-C|14 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTION PAPER MARCH - 2015)

    SUNSTAR PUBLICATION|Exercise PART-D|10 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTION PAPER MARCH - 2015)

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos
  • II PUC MATHEMATICS ( SUPPLEMENTARY EXAM QUESTION PAPER JUNE -2019)

    SUNSTAR PUBLICATION|Exercise PART-E|3 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-D|14 Videos

Similar Questions

Explore conceptually related problems

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

y = sin^(-1)((2x)/(1 + x^2))

int (sin^(-1) x)/(sqrt(1 - x^2)) dx .

If y = sin^(-1) (2xsqrt(1-x^(2))) + sec^(-1) (1/sqrt(1-x^(2))) then dy/dx =

If sin^(-1) ((2a)/(1 +a^(2))) + sin^(-1) ((2b)/(1 + b^(2))) = 2tan^(-1) x , then x is equal to

The derivative of sin^(-1) ((2x)/(1+x^(2))) w.r.t sin^(-1) ((1-x^(2))/(1+x^(2))) is