Home
Class 12
MATHS
Prove that int0^(pi/2) sin2xlogtanxdx=0...

Prove that `int_0^(pi/2) sin2xlogtanxdx=0`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    JMD PUBLICATION|Exercise EXERCISE|31 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JMD PUBLICATION|Exercise EXAMPLE|31 Videos

Similar Questions

Explore conceptually related problems

Prove that : ""∫_0 ^(pi/2)sin2xlogtanxdx=0

Using property of define integrals, prove that : int_(0)^(pi//2)sin2xlogtanx dx=0

Prove that for any positive integer k , (sin2k x)/(sinx)=2[cosx+cos3x++cos(2k-1)x]dot Hence, prove that int_0^(pi/2)sin2x kcotxdx=pi/2dot

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2) (sin x -cos x)/(1+sin x cos x)dx = 0 .

int_(0)^(pi/6) sin2x . cosx dx

Using property of define integrals, prove that : int_(0)^(pi//2)logcos x dx=(-pi)/2log2

By using the properties of definte, prove that int_(0)^(pi//2)(sinx)/(sinx+cosx)=(pi)/4

By using the properties of definte, prove that int_(0)^(pi//2)cos^(2)x dx=(pi)/4