Home
Class 12
MATHS
The unit vector in the opposite directio...

The unit vector in the opposite direction of `bar(x)+bar(y)-2bar(z)` is ………… where `bar(x)=(1,1,0),bar(y)=(0,1,1)` and `bar(z)=(1,0,1)`.

A

`((1)/(sqrt(6)),(-2)/(sqrt(6)),(1)/(sqrt(6)))`

B

`((1)/(6),(-2)/(6),(1)/(6))`

C

`((-1)/(sqrt(6)),(2)/(sqrt(6)),(-1)/(sqrt(6)))`

D

`((-1)/(6),(2)/(6),(-1)/(6))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-A)|6 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-B)|4 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (True/False)|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

The unit vector in the direction of bar(x)=(-2,1,-2) is …………..

The unit vector parallel to the vecotr bar(a)-bar(b) is ……………. where bar(a)=(1,2,-3) and bar(b)=(-2,-4,-9)

If |bar(x)+bar(y)|=|bar(x)-bar(y)| , then

bar(x),bar(y),bar(z) are zero vectors. If …………… then bar(x).bar(y)=bar(x).bar(z).(bar(x),bar(y)ne0) .

bar(a)=(-3,1,0),bar(b)=(1,-1,-1) then |"Comp"_(bar(b))bar(a)| = …………

The vector in the direction of the vector vec(a)=bar(i)-2bar(j)+2bar(k) that has magnitude 9 is ……..

If bar(x)=(1,-1,0),bar(y)=(0,1,3) and bar(z)=(2,1,1) then bar(x)xx (bar(y)xx bar(z)) = ………….

If |bar(x)|=|bar(y)|=1 and bar(x)_|_bar(y) , then |bar(x)-bar(y)| =……………

The vector bar(a)=(x,y,z) makes an obtuse angle with y- axis. bar(b)=(y,-2z,3x) and bar( c )=(2z,3x,-y) . The vector bar(a) makes equal angle with bar(b) and bar( c ).bar(a) is perpendicular to bar(d)=(1,-1,2) . If |bar(a)|=2sqrt(3) then bar(a) = ...........

If bar(x)=(1,1,2),bar(y)=(1,2,1)" and "bar(z)=(2,1,1) , then find bar(x)xx(bar(y)xxbar(z))

KUMAR PRAKASHAN-VECTOR ALGEBRA -Solutions of NCERT Exemplar Problems (Multiple Choice Questions (MCQs) )
  1. The unit vector parallel to the vecotr bar(a)-bar(b) is ……………. where...

    Text Solution

    |

  2. If bar(a)=(1,1,1),bar(b)=(4,-2,3) and bar( c )=(1,-2,1) then the vect...

    Text Solution

    |

  3. The unit vector in the opposite direction of bar(x)+bar(y)-2bar(z) is ...

    Text Solution

    |

  4. The vector with magnitude 17sqrt(2) and in the opposite direction of (...

    Text Solution

    |

  5. Out of the following …………. Is the unit vector in the direction of (3ha...

    Text Solution

    |

  6. The position vector of the point P is (4, 5, -3). The distance of the ...

    Text Solution

    |

  7. The position vector of a point A is (4, 2, -3). If the distance of the...

    Text Solution

    |

  8. vec(a)=hati+hatj+hatk,vec(b)=hati-hatj+hatk and vec( c )=hati+2hatj-...

    Text Solution

    |

  9. A(1, 1, 2), B(4, 3, 1) and C(2, 3, 5) are vertices of a triangle ABC. ...

    Text Solution

    |

  10. The position vectors of two points A and B are respectively 6vec(a)+2v...

    Text Solution

    |

  11. The position vectors of the vertices of triangle are 3hati+4hatj+5hatk...

    Text Solution

    |

  12. The angle between the unit vectors vec(a) and vec(b) is 2theta. Where ...

    Text Solution

    |

  13. squareABCD is a parallelogram. (A(1)) and B(1) are midpoints of the si...

    Text Solution

    |

  14. In DeltaABC,vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk. Length ...

    Text Solution

    |

  15. If bar(x)=(a,4,2a) and bar(y)=(2a,-1,a) are perpendicualr to each othe...

    Text Solution

    |

  16. If bar(x)=(3,1,0),bar(y)=(2,2,3),bar(z)=(-1,2,1). If bar(x)|(bar(y)+...

    Text Solution

    |

  17. If bar(x)=(1,2,4),bar(y)=(-1,-2,k),k ne -4 then |bar(x).bar(y)|………|bar...

    Text Solution

    |

  18. If bar(a)=(-3,1,0) and bar(b)=(1,-1,-1) then "Comp"(bar(a))bar(b) …………...

    Text Solution

    |

  19. The projection of (1, 2, -1) on hati is …………….

    Text Solution

    |

  20. A(3,-1),B(2,3) and C(5,1) are given then m angleA = ………

    Text Solution

    |