Home
Class 12
MATHS
In a parallelogram ABCD, vec(AB)=hati+ha...

In a parallelogram ABCD, `vec(AB)=hati+hatj+hatk` and diagonal `vec(AC)=hati-hatj+hatk` then `angleBAC` = …………….

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`sin^(-1)((sqrt(8))/(3))`

D

`cos^(-1)((sqrt(8))/(3))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-A)|6 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Practice Paper - 10 (Section-B)|4 Videos
  • VECTOR ALGEBRA

    KUMAR PRAKASHAN|Exercise Solutions of NCERT Exemplar Problems (True/False)|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER -11|16 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC,vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk . Length of the median drawn from A is ………………

Vectors along the adjacent sides of parallelogram are veca = hati +2hatj +hatk and vecb = 2hati + 4hatj +hatk . Find the length of the longer diagonal of the parallelogram.

Find |vec(a)xx vec(b)| , if vec(a)=hati-7hatj+7hatk and vec(b)=3hati-2hatj+2hatk .

A vector has magnitude 5 units. It is parallel to the resultant vectors of vec(a)=2hati+3hatj-hatk and vec(b)=hati-2hatj+hatk . Find this vector.

The vectors of two sides of the triangle are vec(a)=3hati+6hatj-2hatk and vec(b)=4hati-hatj+3hatk then find all the angles of the triangle.

If vec(a)=hati+hatj+2hatk and vec(b)=3hati+2hatj-hatk then find vec(a)+3vec(b).(2vec(a)-vec(b)) .

The diagonals of a parallelogram are expressed as vecA=5hati05hatj+3hatk and hatB=3hatj-2hatj-hatk . Calculate the magnitude of area of this parallelogram.

KUMAR PRAKASHAN-VECTOR ALGEBRA -Solutions of NCERT Exemplar Problems (Multiple Choice Questions (MCQs) )
  1. For a vector bar(a),bar(a)xx vec( r )=bar(j) then bar(a).bar( r ) = ……...

    Text Solution

    |

  2. If bar(mu)=bar(a)-bar(b),bar(v)=bar(a)+bar(b),|bar(a)|=|bar(b)|=2 then...

    Text Solution

    |

  3. In a parallelogram ABCD, vec(AB)=hati+hatj+hatk and diagonal vec(AC)=h...

    Text Solution

    |

  4. The points A(vec(a)),B(vec(b)) and C(vec( c )) are collinear then …………...

    Text Solution

    |

  5. For any vectors vec(a),vec(b) and vec( c ). Out of the following, whic...

    Text Solution

    |

  6. bar(a)=2hati+hatj-2hatk and bar(b)=hati+hatj. The vector bar( c ) is s...

    Text Solution

    |

  7. In a quadrilateral ABCD, vec(AB)=vec(b),vec(AD)=vec(d) and vec(AC)=m v...

    Text Solution

    |

  8. If vec(a)=2hati+hatj+x hatk and vec(b)=hati+hatj-hatk then the minimum...

    Text Solution

    |

  9. If vec(a).hati=4 then (vec(a)xx hatj).(2hatj-3hatk)= ………..

    Text Solution

    |

  10. vec(a),vec(b) and vec( c ) are unit vectors vec(a)xx(vec(b)xx vec( c )...

    Text Solution

    |

  11. If vec(u)=hati xx(vec(a)xx hati)+hatj xx(vec(a)xx hatj)+hatk xx(vec(a)...

    Text Solution

    |

  12. For the vectors vec(x) and vec(y),vec(x)+vec(y)=vec(a),vec(x)xx vec(y)...

    Text Solution

    |

  13. Vector vec(a)=hati-hatj,vec(b)=hati+hatj+hatk. The vector vec( c ) is ...

    Text Solution

    |

  14. The vectors vec(a) and vec(b) are not perpendicular. The vectors vec( ...

    Text Solution

    |

  15. vec(a)=hatj-hatk and vec( c )=hati-hatj-hatk. The vector vec(b) is suc...

    Text Solution

    |

  16. For any vector vec(a),(vec(a)xx vec(i))^(2)+(vec(a)xx hatj)^(2)+(vec(a...

    Text Solution

    |

  17. vec(a),vec(b) and vec( c ) are three vector vec(a)ne0 and |vec(a)|=|ve...

    Text Solution

    |

  18. For any vecotr vec(a), The value of hati xx(vec(a)xx hati)+j xx(vec(a)...

    Text Solution

    |

  19. If (a(1),1,1),(1,a(2),1) and (1,1,a(3)) are coplaner (where a(i)ge1,i=...

    Text Solution

    |

  20. If bar(x)=(1,-1,0),bar(y)=(0,1,3) and bar(z)=(2,1,1) then bar(x)xx (ba...

    Text Solution

    |