Home
Class 12
MATHS
Minimise Z = 3x + 2y subject to the co...

Minimise Z = 3x + 2y
subject to the constraints :
`x+y ge 8" …(1)"`
`3x+5y le 15" …(2)"`
`x ge 0, y ge 0" …(3)"`

Text Solution

Verified by Experts

The correct Answer is:
It has no feasible region subject to the given constraints.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMPLAR PROBLEMS|44 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise MISCELLANEOUS EXERCISE - 12|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise Practice Paper - 3 (Section - D)|1 Videos

Similar Questions

Explore conceptually related problems

x ge 3, y ge 2

Maximise Z = 3x + 4y, subject to the constraints : x+y le 1, x ge 0 .

Solve the following problem graphically : Minimise and Maximise Z = 3x + 9y " …(1)" subject to the constraints : x+3y le 60" …(2)" x+y ge 10 " …(3)" x le y" …(4)" x ge 0, y ge 0" …(5)"

Solve the following linear programming problem graphically : Minimise Z = 200 x + 500 y " …(1)" subject to the constraints : x+2y ge 10" …(2)" 3x+4y le 24" …(3)" x ge 0, y ge 0" ...(4)"

Solve the following linear programming problem graphically : Maximise Z = 4x + y " …(1)" subject to the constraints : x+y le 50 " …(2)" 3x+y le 90" …(3) " x ge 0, y ge 0" ...(4)"

Determine graphically the maximize value of the subjective function Z = 10x + 25y " …(1)" subject to the constraints : x le 3, y le 3" …(2)" x+y le 5" …(3)" x ge 0, y ge 0" .. .(4)"

Maximise Z=3x+4y Subject to the constraints x+yle4, xge0, yge0

Minimise z = 13x - 15y subject to the constraints : x+y le 7, 2x-3y+6 ge 0, x ge 0, y ge 0

Minimise Z=3x+2y subject to the constraints, x+yge8 ………..1 3x+5yle15 …………2 xge0, yge0 ………..3

Maximize the function z = 6x+ 3y , subject to the constraints : 4x+y ge 80, x+5y ge 115, 3x+2y le 150, x ge 0, y ge 0