Home
Class 11
MATHS
f(x)={:{(x+1,x le 1),(2x+1,1 lt x le 2):...

`f(x)={:{(x+1,x le 1),(2x+1,1 lt x le 2):}` and `g(x)={:{(x^(2)",",-1le x lt2),(x+2",",2 le x le 3):}`
The domain of the function `f(g(x))` is

Text Solution

Verified by Experts

The correct Answer is:
`f(g(x))= {{:(x^(2)+1, -1 le x le 1),(2x^(2)+1, 1 lt x le sqrt(2)):}`
`g(f(x)) = {{:((x+1)^(2), -2 le x lt 1),(x+3, x=1):}`
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE -I|53 Videos
  • FUNCTIONS

    AAKASH SERIES|Exercise EXERCISE -II|165 Videos
  • FUNCTIONS

    AAKASH SERIES|Exercise OBJECTIVE QUESTIONS ON ADDITIONAL INFORMATION|5 Videos
  • ERRORS AND APPROXIMATIONS

    AAKASH SERIES|Exercise ADVANCED SUBJECTIVE TYPE QUESTION|15 Videos
  • HEIGHTS AND DISTANCES

    AAKASH SERIES|Exercise PRACTICE SHEET Exercise-I (Level-II) (Straight Objective Type Questions)|13 Videos

Similar Questions

Explore conceptually related problems

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),( Sinx, 0le xle pi ):} where [.] denotes the greatest functions The exhaustive domain of g(f(x)) is

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),(Sinx 0le xle pi ):} where [.] denotes the greatest functions The range of g(f(x)) is

Consider two funtions f(x) = {:{( [x], -2le x le -1 ),(|x|+1, -1 lt xle 2 ):} and g(x) = {:{( [x]. -pi le x lt 0 ),(Sinx 0le xle pi ):} where [.] denotes the greatest functions The number of integral points in the range of g(f(x)) is

Show that f(x)={{:(x^(2),if, 0 le x le 1),(x ,if, 1 le x le 2):} is continuous on [0,2]

If f(x)={{:(x^(2) " for " 0 le x le 1),(sqrt(x) " for "1 le x le 2):} then int_(0)^(2) f(x)dx=

f(x)={{:(x^(2),if x le 1),(x, if 1 lt x le 2),(x-3,if x gt 2):} then Lt_(x to 2+) f(x)=