Home
Class 11
MATHS
Let bara and barb be two non-collinear u...

Let `bara and barb` be two non-collinear unit vectors. If `baru=bara-(bara.barb)barb and barv=bara xx barb`, then `|barv|=`

A

`|baru|`

B

`|bara|`

C

`|barb|`

D

`|bara||barb|`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise MULTIPLE PRODUCT OF TWO VECTORS|21 Videos
  • APPENDICES (REVISION EXERCISE)

    AAKASH SERIES|Exercise DOT PRODUCT OF TWO VECTORS|34 Videos
  • 3D-COORDINATE SYSTEM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|40 Videos
  • CHANGE OF AXES

    AAKASH SERIES|Exercise Practice Exercise|29 Videos

Similar Questions

Explore conceptually related problems

Let bara and barb be non-zero, non collinear vectors. If abs(bara+barb) = abs(bara-barb) " find the angle between " bara and barb .

Let bara,barb and barc be non coplanar vectors if [2bara-barb+3barc,bara+barb-2barc,bara+barb-3barc]=lamda[bara barb barc] then find lamda .

Knowledge Check

  • If barmu =bara-barb, barv=bara+barb and absbara=absbarb, " then " barmu.barv is

    A
    `lt 0`
    B
    `gt0`
    C
    `2absbara^(2)`
    D
    0
  • [bara barb barc]+[bara barc barb] =

    A
    `[bara barb barc]`
    B
    `2[bara barb barc]`
    C
    `3[bara barb barc]`
    D
    0
  • If bara,barb " are noncollinear unit vectors, " abs(bara+barb) =sqrt 3 " then " (2bara+5barb).(3bara-barb) =

    A
    1)-15
    B
    2)`-15/2`
    C
    3)15
    D
    4)`15/2`
  • Similar Questions

    Explore conceptually related problems

    Let bara,barb and barc be non coplanar vectors if [bara+2barb 2barb+barc 5barc+bara]=lamda[bara barb barc] then find lamda

    i) Let bara, barb and barc be non - coplanar vectors and baralpha=bara+2barb+3barc,barbeta=2bara+barb-2barc and bargamma=3bara-7barc , then find [baralphabarbetabargamma] (ii) If bara,barbbarc are non coplanar vectors, then find ((bara+2barb-barc).[(bara-barb)xx(bara-barb-barc)])/([barabarbbarc])

    If bara, barb are orthogonal unit vectors then [bara+bara xxbarb barb+baraxxbarb baraxxbarb]=

    If bara, barb are two unit perpendicular vectors then baraxx (baraxx barb) =

    If bara,barb are non-zero and non-collinear vectors then [bara barb bari]bari+[bara barb barj]barj+[bara barb bark]bark =