Home
Class 11
MATHS
A point I is the centre of a circle insc...

A point I is the centre of a circle inscribed in a triangle ABC then show that
`abs(bar(BC))bar(IA)+abs(bar(CA))bar(IB)+abs(bar(AB))bar(IC)=bar(0)`

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 VERY SHORT ANSWER QUESTIONS|14 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 SHORT ANSWER QUESTIONS|16 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise SOLVED EXAMPLES|13 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

If I is the centre of a circle inscribed in a DeltaABC , then abs(bar(BC))bar(IA)+abs(bar(CA))bar(IB)+abs(bar(AB))bar(IC)=

If O is the circumcentre, 'H' is the orthocentre of triangle ABC, then show that bar(OA)+bar(OB)+bar(OC)=bar(OH)

If, in a right angled triangle ABC, the hypo tenus AB =p, then bar(AB).bar(AC)+bar(BC).bar(BA)+bar(CA).bar(CB) =

If AD, BE and CF are the medians of DeltaABC , then the value of bar(BC).bar(AD)+bar(CA).bar(BE)+bar(AB).bar(CF)=

If D is the midpoint of the side BC of a triangle ABC then bar(AB)^(2)+bar(AC)^(2)=

If C is the mid point of AB and if P is any point out side AB then show that bar(PA)+bar(PB)=2bar(PC) .

ABCDE is a pentagon then bar(AB)+bar(AE)+bar(BC)+bar(DC)+bar(ED)+bar(AC)=

ABC is an equitateral triangle of side 'a'. Then bar(AB).bar(BC)+bar(BC).bar(CA)+bar(CA).bar(AB) =