Home
Class 11
MATHS
If bar(OA)=bar(a), bar(OB)=bar(b), bar(O...

If `bar(OA)=bar(a), bar(OB)=bar(b), bar(OC)=2bar(a)-4bar(b)` then prove that C lies outside of `DeltaOAB` but inside the `angleOBA`

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 VERY SHORT ANSWER QUESTIONS|14 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise EXERCISE - 1.1 SHORT ANSWER QUESTIONS|16 Videos
  • PROPERTIES OF VECTORS

    AAKASH SERIES|Exercise SOLVED EXAMPLES|13 Videos
  • PROPERTIES OF TRIANGLES

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL II) (Linked Comprehension Type Questions Passage -III:)|3 Videos
  • RATE MEASUREMENT

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE - 1) (LEVEL - 1) (STRAIGHT OBJECTIVE TYPE QUESTION)|43 Videos

Similar Questions

Explore conceptually related problems

If bar(a)=bar(i)+4bar(j), bar(b)=2bar(i)-3bar(j) and bar(c)=5bar(i)+9bar(j)" then "bar(c)=

The points 2bar(a)+3bar(b)+bar(c), bar(a)+bar(b), 6bar(a)+11bar(b)+5bar(c) are

If bar(a)=bar(i)+bar(j), bar(b)=bar(j)+bar(k), bar(c)=bar(i)+bar(k) , then the unit vector in the opposite direction of bar(a)-2bar(b)+3bar(c) is

Prove that bar(a)x[bar(a)x(bar(a) x bar(b))] = (bar(a).bar(a))(bar(b)xbar(a)) .

The points O, A, B, X and Y are such that bar(OA)=bar(a), bar(OB)=bar(b), bar(OX)=3bar(a) and bar(OY)=3bar(b)," find "bar(BX) and bar(AY) in terms of bar(a) and bar(b) . Further if the point p divides bar(AY) in the ratio 1 : 3 then express bar(BP) interms of bar(a) and bar(b) .

If bar(OA)=bar(i)+2bar(j)-3bar(k), bar(OB)=3bar(i)-2bar(j)+5bar(k) and 2bar(AC)=3bar(AB)" then "bar(AC)=

Let bar(a) = 2bar(i)-bar(j)+bar(k), bar(b) = 3bar(i) + 4bar(j) -bar(k) and if theta is the angle between bar(a), bar(b) then find sin theta .

Let A, B, C, D be four points with position vectors bar(a)+2bar(b), 2bar(a)-bar(b), bar(a) and 3bar(a)+bar(b) respectively. Express the vectors bar(AC), bar(DA), bar(BA) and bar(BC) interms of bar(a) and bar(b) .